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1 Definition of Ends

Throughout the rest of the text, let X be a Hausdorff, connected, locally
connected, locally compact and second countable topological space. For most
applications, X can be taken as a manifold, possibly with boundary.

If X is not compact, then we can describe the Alexandroff extension
(one point compactification) of X. This is done by adjoining to X a point
∞ and a topology generated by the open sets of X along with the sets
(X \ K) ∪ {∞}, for all compact sets K ⊂ X. The resulting space X̂ =
X∪{∞} will be compact Hausdorff and have X as a dense open subset. This
encapsulates the intuitive idea that for a sequence to “diverge” to infinity, it
must eventually leave every compact set of X. However, we can make a more
precise description of the possible ways a sequence may diverge to infinity in
X. This is done by constructing the ends E(X) of X.

For K ⊆ L compact subsets of X, we have a natural inclusion X \ L ⊆
X \K. This gives us a map

ιKL : Comp(X \ L) → Comp(X \K)

from the set of (connected) components of X \L to the set of components of
X \K, since each U ∈ Comp(X \ L), being connected, will be contained in
a unique component of X \K. Naturally, for K ⊆ L ⊆ M compact sets, we
have ιKL ◦ ιLM = ιKM .

This gives us an inverse system (Comp(X \ K), ιKL)K running over all
compact subsets of X. By embuing each set Comp(X \K) with the discrete
topology, we define the set of ends E(X) of X the be the inverse limit of this
system:

E(X)
ιL

xx

ιK

''

· · · // Comp(X \ L) ιKL // Comp(X \K) // · · ·
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This inverse limit, which always exists in the category of topological
spaces, comes equipped with continuous maps ιK : E(X) → Comp(X \ K)
that make the inverse system commute: ιK = ιKL ◦ ιL. The topology on
E(X) is generated by the sets

Û = {e ∈ E(X) : ιK(e) = U} = ι−1
K (U),

running over all compact sets K ⊆ X and all components U of X \ K.
This is the coarsets topology on E(X) which makes the maps ιK continuous.
Note that possibly E(X) = ∅; this will be the case if X is compact, since
Comp(X \X) = ∅ will be in the inverse system, and E(X) must map to it.

Intuitively, for an end e ∈ E(X), ιK(e) represents the component of X \K
which contains this end, being a neighborhood of it. In fact, we may give
the space X ⊔E(X) a natural topology, generated by the open sets of X and
by the sets of the form U ∪ ι−1

K (U) for U ∈ Comp(X \K). We will return to
this topology later.

Though very general and independent of additional constructions in X,
this definition by an inverse limit is somewhat hard to work with. Hence
we introduce another description of E(X) which, historically, was how the
theory was first described.

An exhaustion by compact sets of X is a sequence (Kn)n∈N of compact
subsets of X such that, for all n ∈ N, Kn ⊆ intKn+1 and X =

⋃
n∈N Kn.

Under the given hypotheses, X always admits a compact exhaustion. An
important property of compact exhaustions is that for every compactK ⊆ X,
there is some n ∈ N such that K ⊆ Kn; this is because {intKn}n will be
an open cover of K, admitting a finite subcover. In some contexts it is
required that each Kn be connected, but for the theory that follows this is
not necessary.

Given a compact exhaustion of X, we may consider the inverse system
generated by it:

· · · → π0(X \Kn+1) → π0(X \Kn) → π0(Kn−1) → · · · → π0(X \K0).

Let E ′(X) be its inverse limit. As such a sequence is cofinal in the full inverse
system of compact sets, we obtain a unique identification between E ′(X) and
E(X):

Proposition 1.1. The spaces E(X) and E ′(X) are canonically homeomor-
phic.

Proof. Let ι′Kn
: E ′(X) → Comp(X \Kn) be the maps given by the inverse

limit E ′(X). As we also have the maps ιKn : E(X) → Comp(X \ Kn),

2



by the universal property of the inverse limit, we have a continuous map
f : E(X) → E ′(X) that makes the diagram commute:

E(X)

ιKn+1



ιKn

��

f
��

E ′(X)
ι′Kn+1

ww

ι′Kn

&&

· · · // π0(X \Kn+1)
ιKn+1Kn

// π0(X \Kn) // · · ·

Now, since (Kn)n is a compact exhaustion, for any compact set K ⊆ X there
exists some sufficiently big n such that K ⊆ Kn. Hence we may take the
map ιKnK ◦ ι′Kn

: E ′(X) → π0(X \K), which will not depend on the choice of
n due to commutativity of the diagrams. With this, we have by the universal
property of the inverse limit, a unique continuous map g : E ′(X) → E(X)
that makes all of the diagrams commute. Again by the universal property, we
must have that g◦f and f ◦g are the identity maps. This implies that for any
choice of compact exhaustion of X, we have a unique canonical isomorphism
from E(X) to the space of ends of this exhaustion.

With this, we have a fairly concrete description of and end e ∈ E(X):
given a compact exhaustion ofX, e will be uniquely determined by a sequence
(Un)n of connected open components of X \Kn such that

· · · ⊆ Un+2 ⊆ Un+1 ⊆ Un ⊆ · · · ⊆ U1 ⊆ U0.

In particular, the characterization of the ends will not depend on the partic-
ular exhaustion by compact sets we use.

2 Results

It is not immediately obvious that, for example, if X is non-compact,
then E(X) ̸= ∅. This is because even though we may find sequences of points
diverging off to infinity, it is hard to keep track of which components of the
complements of compact sets the points belong to. On a similar note, it is not
obvious that E(X) is compact or that X ⊆ X ⊔E(X) is a compactification of
X, since the sets Comp(X \K) may be infinite. These results will indeed be
true under the hypotheses we have made on X, notably local connectedness
and local compactness.

We start with the following lemma, which essentially says that if you
fatten a compact set, all but finitely many components of its complement
will be covered:
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Lemma 2.1. Let K,L ⊆ X be nonempty compact subsets such that K ⊆
intL. Then for all but finitely many components U of X \ K we have that
U ⊆ intL.

Proof. AsX is locally connected, each component ofX\K is open. Moreover,
for U a component, ∂U ⊆ K; otherwise there would be some x ∈ ∂U \ K,
and x is contained in a component V of X \K. But any neighborhood of x
must intersect U , so U = V by connectedness. But then x ∈ U ∩ ∂U , which
cannot happen as U is open.

Suppose, for the sake of contradiction, that there exist infinitely many
distinct components {Ui}i∈N of X \K such that Ui ̸⊆ L, so that Ui ∩ Lc is
open and nonempty. Let M be a compact set in X such that L ⊆ intM ;
M always exists because X is locally compact. Explicitly, take a compact
neighborhood of each x ∈ L, so that a finite subcover will be a compact set
which contains L in its interior.

We claim that for all i ∈ N, we have that Ui ∩ Lc ∩ intM ̸= ∅. For if
Ui ∩ Lc ∩ intM = ∅, then

Ui ⊆ (Lc ∩ intM)c = L ∪ (intM)c.

Note that L and (intM)c are disjoint closed subsets of X. As Ui is connected,
we must have that either Ui ⊆ L or Ui ⊆ (intM)c. By hypothesis, the first
situation does not happen, so Ui ∩ intM = ∅, and in particular, Ui ∩ L =
∅. Because K ̸= ∅, Ui is nonempty and not the whole X, so there exists
yi ∈ ∂Ui ⊆ K. As K ⊆ intL, any sufficiently small neighborhood of yi is
contained in L, and since yi ∈ ∂Ui, this neighborhood must intersect Ui, a
contradiction with Ui ∩ L = ∅. Hence the claim is shown.

For each i ∈ N, take zi ∈ Ui ∩ Lc ∩ intM . (This uses countable choice.)
As M is compact and X is first countable, M is sequentially compact, so
(zi)i has a convergent subsequence zik → z∞. As zik /∈ L for all k and
K ⊆ intL, we have that z∞ /∈ K. Let W be the component of X \ K to
which z∞ belongs. As it is a neighborhood of z∞, for sufficiently large k we
have that zik ∈ W . But zik belongs to the component Uik , so Uik = W ; as
the components are distinct for all i ∈ N, this cannot happen. Therefore for
all but finitely many U ∈ Comp(X \K), we have U ⊆ L, and as U is open,
U ⊆ intL.

Theorem 2.2. For K ⊆ X a compact set, X \K has at most finitely many
non-precompact components. Moreover, if P ⊆ Comp(X \ K) denotes the
set of precompact components of X \K, then K ∪

⋃
P is compact.

Intuitively, this theorem states that by filling in all of the holes of a
compact set (the precompact components), we still have a compact set.
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Proof. Consider a compact set L ⊆ X such that K ⊆ intL. Every non-
precompact component of X \ K cannot be contained in L, hence by the
previous lemma there must be finitely many of them.

Note that K ∪
⋃

P is closed because its complement is the union of the
non-precompact components of X \ K, which are open. Let U1, . . . , Um be
those precompact components of X \K that are not contained in L. Then
L ∪ U1 ∪ · · · ∪ Um is compact and contains K ∪

⋃
P , so that the latter is

compact.

A compact set is full if its complement has no precompact components
(intituvely, it has no holes). The previous theorem gives us a way of attribut-
ing to any compact set K ⊆ X its hull Hull(K), which is the union of K
wth all of its precompact components. Naturally, Hull(K) is full, compact
and contains K, and Hull(Hull(K)) = Hull(K).

Proposition 2.3. Given K ⊆ X compact, if L ⊆ X is a full compact set
such that K ⊆ L, then Hull(K) ⊆ L.

Proof. If Hull(K) ̸⊆ L, then there exists a precompact component U of X\K
and some x ∈ U \ L ̸= ∅. Then x belongs to some component V of X \ L,
and since x ∈ U , we have that ιKL(V ) = U , that is, V ⊆ U . But as L is
full, all components of X \L are not precompact, so V ⊆ U precompact is a
contradiction.

The above proposition also shows that K ⊆ L =⇒ Hull(K) ⊆ Hull(L);
this is because K ⊆ L ⊆ Hull(L), and as Hull(L) is full, Hull(K) ⊆ Hull(L).

The corollary below, of fundamental importance, is exercise 3.3.4 in [2]:

Corollary 2.4. X admits an exhaustion by full compact sets.

Proof. Given a compact exhaustion (Kn)n∈N of X, let Ln = Hull(Kn). As
(Kn)n is a compact exhaustion, there exists some n1 such that L0 ⊆ intKn1 ⊆
intLn1 . Similarly, there will exist n2 > n1 such that Ln1 ⊆ intKn2 ⊆ intLn2 .
Proceeding by induction, we create a sequence (Lnm)m of full compact sets
forming an exhaustion.

By considering a full compact exhaustion of X, each set Comp(X \Kn)
will be finite, consisting of the non-precompact components. This allows us
to prove the following:

Theorem 2.5. E(X) is Hausdorff, compact and second countable, and if
E(X) ̸= ∅, then it is also totally disconnected.
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Proof. As an inverse limit of discrete finite topological spaces, E(X) will be
a subset of the product

∏
Comp(X \Kn), which is Hausdorff and compact

by Tychonoff’s theorem. That E(X) is a closed subset is a consequence of
the fact that E(X) is an intersection of closed sets

E(X) =
⋂
i,j

{x ∈
∏

Comp(X \Kn) : ιij ◦ πj(x) = πi(x)},

so E(X) is compact.
If E(X) ̸= ∅ and C ⊆ E(X) is nonempty and connected, then ιn(C) is

connected for all n. But the connected nonempty sets of Comp(X \Kn) are
the singletons, so for all n there exists a unique Un ∈ Comp(X \ Kn) such
that ιn(C) = {Un}. All ends in C therefore define the same sequence, hence
must represent the same end; so C is a singleton.

Corollary 2.6. X is compact if and only if E(X) = ∅.

Proof. We have already seen that if X is compact then E(X) = ∅. Now
suppose X is not compact. Then, given an exhaustion (Kn)n of X by full
compact sets, we have that every set Comp(X \Kn) is finite non-empty.

Pick any U0 ∈ Comp(X \ K0). As U0 is not precompact, U0 ̸⊆ K1,
so that there exists some x1 ∈ U0 \ K1. This point must belong to some
component U1 ∈ Comp(X \K1), and U1 ⊆ U0. We may proceed inductively
by picking xn ∈ Un \Kn+1 and considering its component, which amounts to
verifying that the preimage ι−1

n,n+1(Un) is not empty. The sequence (Un)n∈N
thus constructed will be an end in E(X).

The above proof shows that for a non-compact spaceX and a full compact
exhaustion of it, all the maps in the inverse system will be surjective. In
particular, the number of components of X \Kn is non-decreasing with n.

3 The Freudenthal Compactification

We say that a set U ⊆ X is a neighborhood of an end e ∈ E(X) if U
contains ιK(e), for some K ⊆ X compact. This definition agrees with the
topology on X ⊔ E(X).

Proposition 3.1. If U is the neighborhood of an end, then U is not precom-
pact.

Proof. Consider a full compact exhaustion (Kn)n of X. If U contains ιK(e),
then it will also contain ιKn(e) for some n. As all components of X \Kn are
not precompact, U is not precompact.
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The converse does not necessarily hold, even if we require that U be
connected: consider a sector of angle 0 < θ < 2π around 0 in C \ {0} and
radius 1. However, it holds if U is a component of X\K for someK compact:

Proposition 3.2. If K ⊆ X is compact and U is a component X \K, then
U is the neighborhood of an end if and only if U is not precompact.

Proof. Suppose U is not precompact. Consider a full compact exhaustion
(Kn)n ofX such thatK ⊆ K0. As in the proof of 2.6, there is a component U0

ofX\K0 such that U0 ⊆ U , and starting from it, we may construct a sequence
of components (Un)n representing an end e of which U is a neighborhood.

Recall that we imbue X ⊔E(X) with the topology generated by the open
sets of X and the sets of the form

U ∪ ι−1
K (U),

running over all compact sets K ⊆ X and U ∈ Comp(X \K). We also have
topological embeddings X ↪→ X ⊔ E(X) and E(X) ↪→ X ⊔ E(X) given by
the inclusions, where X is open and E(X) is closed. Moreover, X will be a
dense open set in X ⊔ E(X).

Theorem 3.3. X⊔E(X) is Hausdorff, second countable, compact, connected
and locally connected.

Proof. Given that X and E(X) are Hausdorff, we need only find separating
neighborhoods for x ∈ X and e ∈ E(X). As X is locally compact, we
may find x ∈ U ⊆ K where U is open and K is compact, so that U and
(X \ K) ∪ E(X) are disjoint open sets separating x and e. X ⊔ E(X) is
second countable by considering a countable base for X and a full compact
exhaustion of X.

Suppose that (xk)k∈N ⊂ X is a sequence diverging to infinity, and consider
a full compact exhaustion (Kn)n of X. Since each set X \ K0 has finitely
many components, there exists U0 ∈ Comp(X \K0) such that infinitely many
of the xk are contained in U0. This gives us a subsequence (x0

k)k of (xk)k.
Consider now ι−1

0,1(U0) ⊆ Comp(X\K1), which is nonempty by the arguments
in 2.6 and consists of finitely many components which infinitely many of the
x0
k belong to. Hence we may find U1 ∈ ι−1

0,1(U0) and a subsequence (x1
k)k such

that x1
k ∈ U1 for all k. By proceeding inductively, we obtain a sequence

Un ⊆ · · · ⊆ U1 ⊆ U0

of components of X \Kn and subsequences (xm
k )k for m ≤ n such that, for

m ≤ n and all k, xm
k ∈ Um.
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By taking the diagonal subsequence (yn)n = (xn
n)n, we have an infinite

sequence
· · · ⊆ Un ⊆ · · · ⊆ U1 ⊆ U0

and yn ∈ Un for all n. Hence this sequence converges to the end determined
by the decreasing sequence of components. This concludes that X ⊔ E(X) is
sequentially compact, hence compact.

As X is connected, its closure in X ⊔ E(X) is connected. But every end
is the limit of some sequence of points in X, by choosing xn ∈ ιKn(e) in a
compact exhaustion of X. Hence X ⊔ E(X) is connected.

Finally, we show local connectivity at each end by showing that it admits
a basis of connected neighborhoods. Given a compact exhaustion of X, a
basis of neighborhoods for e ∈ E(X) is given by

ιKn(e) ∪ ι−1
Kn

(ιKn(e)).

Each Un = ιKn(e) is connected, So its closure in X ⊔E(X) is also connected.
As Un ∪ ι−1

Kn
(Un) is contained in the closure of Un by the reasonings above

and contains Un, it is connected.

As a useful criterion for convergence, we see that a sequence (xn)n ⊂ X
converges to an end e ∈ E(X) if and only if, for all compact sets K ⊆ X,
there exists some N ∈ N such that, for n ≥ N , xn ∈ ιK(e), where we recall
that ιK(e) is the component of X \ K which “contains” the end, being a
neighborhood of it.

If X is non-compact and X̂ denotes the one point compactification of X,
we construct a map f : X ⊔ E(X) → X̂, which is the identity on X and,

for all e ∈ E(X), f(e) = ∞. This map is continuous; if U ⊆ X̂ is open,
then either ∞ /∈ U , in which case f−1(U) = U ⊆ X, or ∞ ∈ U , where then
K = X \ (U \ {∞}) is compact. then

f−1(U) = E(X) ∪ (X \K).

Since the topology on X ⊔ E(X) is generated by the subsets

U ⊔ ι−1
K (U) = U ∪ {e ∈ E(X) : ιK(e) = U}

for all compact sets K and components U of X \K, by taking the union of
these sets over all components U ∈ π0(X \ K) we obtain E(X) ∪ (X \ K).
By the previous results, we also have that f is a proper map.
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4 Proper Maps

Let X and Y be two spaces having the basic hypotheses assumed in
the introduction. We now wish to understand continuous proper maps f :
X → Y , that is, continuous maps for which the preimages of compact sets
are compact. They are the appropriate class of maps to study behavior at
infinity; intuitively, proper maps preserve diverging sequences, and they act
at infinity predictably. Recall that as Y is locally compact Hausdorff, we
also have that f proper implies it is a closed map. (We will assume that the
proper maps are continuous throughout.)

Suppose f is proper. Then, for a compact set L ⊆ Y , f−1(L) is compact,
and f−1(Y \ L) = X \ f−1(L). Taking preimages preserves the inclusions,
and we also have a map

f∗ : Comp(X \ f−1(L)) → Comp(Y \ L)

taking U to the component of Y \L that contains f(U), as f(U) is connected.
If L ⊆ L′ are compact, this map will make the diagram commute:

Comp(X \ f−1(L′))
ιf−1(L)f−1(L′)

//

f∗
��

Comp(X \ f−1(L))

f∗
��

Comp(Y \ L′)
ιLL′

// Comp(Y \ L)

More generally, f∗ will map from the inverse system of X to the inverse
system of Y . By considering the composition

f∗ ◦ ιf−1(L) : E(X) → Comp(Y \ L),

and by the universal property of the inverse limit, there exists a unique
continuous map from f∗ : E(X) → E(Y ) that makes the diagrams commute.

Explicitly, since

E(X)
f∗

//

ιf−1(L)

��

E(Y )

ιL
��

Comp(X \ f−1(L))
f∗

// Comp(X \ L)

commutes, for an end e ∈ E(X), f∗(e) will be the unique end of Y such that
all neighborhoods of e are mapped into neighborhoods of f∗(e).

This will serve us to extend the proper map f : X → Y to the ends of
the spaces:
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Theorem 4.1. Let f : X → Y be a proper map. Then there exists a unique
continuous extension f̂ : X ⊔ E(X) → Y ⊔ E(Y ).

Proof. Define the map f̂ to be f on X and f∗ on E(X). It will be continuous,

since, for any open set V ⊆ Y , f̂−1(V ) = f−1(V ) is open, and for any open
set of the form V ∪ ι−1

L (V ) for L ⊆ Y compact and V a component of Y \L,
we have

f̂−1(V ∪ ι−1
L (V )) = f−1(V ) ∪ f−1

∗ (ι−1
L (V )) = f−1(V ) ∪ (ιL ◦ f∗)−1(V )

= f−1(V ) ∪ (f∗ ◦ ιf−1(L))
−1(V ) = f−1(V ) ∪ ι−1

f−1(L)((f
−1
∗ (V )),

where f−1
∗ (V ) consists of all the components of X \ f−1(L) that get mapped

into V . Hence

f−1(V ) ∪ ι−1
f−1(L)((f

−1
∗ (V )) = f−1(V ) ∪

⋃
f∗(U)=V

ι−1
f−1(L)(U).

Additionally, f−1(V ) =
⋃

f∗(U)=V U ; that f−1(V ) ⊇
⋃

f∗(U)=V U is evi-

dent, and if x ∈ f−1(V ) ⊆ X \ f−1(L), then x must belong to exactly one
component U of X \ f−1(L). Since f(x) ∈ V , we have that f(U)∩V ̸= ∅, so
that by connectedness f(U) ⊆ V and f∗(U) = V . This shows that

f−1(V ) ∪
⋃

f∗(U)=V

ι−1
f−1(L)(U) =

⋃
f∗(U)=V

(U ∪ ι−1
f−1(L)(U)),

which is a union of open sets in X ⊔ E(X), hence open.

We now show uniqueness of f̂ . If f̃ : X ⊔ E(X) → E(Y ) is continuous
extending f , then, for a sequence (xn)n ⊂ X converging to e ∈ E(X), we
must have that (f(xn))n converges to f̃(e). Let L ⊆ Y be compact. Then
for all sufficiently big n, f(xn) ∈ ιL(f̃(e)). But since for all big n we have
xn ∈ ιf−1(L)(e), by connectedness we must have that the component ιf−1(L)(e)

gets mapped into ιL(f̃(e)), so

f∗(ιf−1(L)(e)) = ιL(f̃(e)).

as this is true for all ends e ∈ E(X) and all compact sets L ⊆ Y , and because
f∗ : E(X) → E(Y ) is unique making the diagrams commute, we must have

that f̃ |E(X) = f∗, so f̃ = f̂ .

Given a self-homeomorphism f : X → X, because it is proper, it will have
a unique continuous extension to the ends. It will in fact permute them:

Theorem 4.2. Given a self-homeomorphism f : X → X, the extension
f̂ : X ⊔ E(X) → X ⊔ E(X) is a homeomorphism.

10



Proof. Consider the maps f∗ : E(X) → E(X) and (f−1)∗ : E(X) → E(X).
We see that, for K ⊆ X compact,

(f∗ ◦ (f−1)∗) ◦ ιf−1(K) = f∗ ◦ (f−1)∗ ◦ ιf−1(K)

= f∗ ◦ ιK ◦ (f−1)∗ = ιf−1(K) ◦ f∗ ◦ (f−1)∗ = ιf−1(K),

because the latter maps f∗ and (f−1)∗ are acting on components and are
therefore inverses of each other. As this is true for all K, and the identity
map idE(X) : E(X) → E(X) also satisfies this commutativity property, we
must have that f∗ ◦ (f−1)∗ = idE(X), and analogously (f−1)∗ ◦ f∗ = idE(X).
Hence f∗ is a homeomorphism and (f∗)

−1 = (f−1)∗. This glues with f and

f−1 to show that f̂ ◦ f̂−1 = f̂−1 ◦ f̂ = id.

All of the results above are very categorical in nature, which stems from
the fact that the inverse limit and the ends of a space are covariant functors
in the class of topological spaces with proper maps.

5 Questions

Problem 1. Given a full compact exhaustion of X, is it easily shown that
|E(X)| = limn→∞ |Comp(X \Kn)|?

Problem 2. How do proper maps interact with full compact sets and hulls?
Is the image/preimage of a full set full, or are there counterexamples?

Problem 3. Is there some universal property that the compactification
X ⊔ E(X) satisfies, analogously to the universal property of the one point

compactification X̂ = X ∪ {∞}?

Problem 4. What do (sufficiently small) neighborhoods of and end look
like? If X is a surface of finite genus and e an isolated end, will it have a
neighborhood homeomorphic to D \ {0}? By filling in the ends, do we still
obtain a surface? Can this be used to classify finite genus surfaces with finite
ends, or do the proofs require this classification result in the first place?

Problem 5. Given a proper map r : [0, 1) → X, it will have a unique
continuous extension mapping 1 to an end of X. How can we use this to
identify ends? What would be the definition of a proper homotopy of proper
rays? What purpose would it serve?

Problem 6. Given a concrete X, can we easily identify its ends, and what
X ⊔ E(X) is? For punctured compact surfaces, this is easy enough; it is
sufficient to find a “workable” exhaustion by full compact sets.
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