A Glimpse on Holomorphic Dynamics Graduate Student Seminar

Eduardo V. Sodré

Brown

September 2023

Newton's Method

Root finding algorithms: how to find the roots of a real function f ?

Newton's Method

Root finding algorithms: how to find the roots of a real function f ?
$f \in C^{1}$ (e.g. polynomial), Newton's method:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

If $g(x):=x-f(x) / f^{\prime}(x)$,

$$
f(x)=0 \Longleftrightarrow g(x)=x .
$$

Newton's Method

Root finding algorithms: how to find the roots of a real function f ?
$f \in C^{1}$ (e.g. polynomial), Newton's method:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

If $g(x):=x-f(x) / f^{\prime}(x)$,

$$
f(x)=0 \Longleftrightarrow g(x)=x .
$$

Geometric meaning of g : take tangent line to f at $(x, f(x))$ and calculate its zero.

Most initial points converge to a zero of f !

Newton's Method

E.g.: finding $\sqrt{3}$. Take $f(x)=x^{2}-3$,

$$
x_{n+1}=x_{n}-\frac{x_{n}^{2}-3}{2 x_{n}}=\frac{1}{2}\left(x_{n}+\frac{3}{x_{n}}\right) .
$$

Newton's Method

E.g.: finding $\sqrt{3}$. Take $f(x)=x^{2}-3$,

$$
x_{n+1}=x_{n}-\frac{x_{n}^{2}-3}{2 x_{n}}=\frac{1}{2}\left(x_{n}+\frac{3}{x_{n}}\right) .
$$

Starting from $x_{0}=1$:

$$
1 \mapsto 2 \mapsto 1.75 \mapsto 1.7321 \ldots \mapsto 1.7320508 \ldots
$$

For general f, some inital points may take longer to converge, or seem to not converge at all.

Newton's Method

What happens in \mathbb{C} ?
For $f(x)=(x-\alpha)(x-\beta), \alpha \neq \beta, \mathbb{C}$ is bissected into halves: One converges to α, the other to β.

Newton's Method

What about more general f, say, $f(x)=x^{3}-1$?

Newton's Method

What about more general f, say, $f(x)=x^{3}-1$?
Idea: take many points, iterate many times, see where they end, and color them.

$$
g(x)=\frac{2}{3} x-\frac{1}{3 x^{2}}
$$

Iteration of a rational function on \mathbb{C}.

"Newton's" Fractal

Figure: Newton's Fractal

Global Dynamics

Endomorphisms of $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$: rational functions.

Global Dynamics

Endomorphisms of $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$: rational functions.

- What are the fixed points? And periodic points?

Global Dynamics

Endomorphisms of $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$: rational functions.

- What are the fixed points? And periodic points?
- Are they attracting or repelling? How are the dynamics near them?

Global Dynamics

Endomorphisms of $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$: rational functions.

- What are the fixed points? And periodic points?
- Are they attracting or repelling? How are the dynamics near them?
- What are the possible orbits of f ?

Global Dynamics

Endomorphisms of $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$: rational functions.

- What are the fixed points? And periodic points?
- Are they attracting or repelling? How are the dynamics near them?
- What are the possible orbits of f ?
- What are the limiting behaviors? Is it sensitive to initial conditions?

Global Dynamics

Endomorphisms of $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$: rational functions.

- What are the fixed points? And periodic points?
- Are they attracting or repelling? How are the dynamics near them?
- What are the possible orbits of f ?
- What are the limiting behaviors? Is it sensitive to initial conditions?
- What happens if we perturb f ?

Fatou and Julia Sets

Let $f: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ be rational of degree $d \geq 2$.
$z \in \hat{\mathbb{C}}$ is in the Fatou set F_{f} if there exists some neighborhood U of z such that $\left\{\left.f^{n}\right|_{U\}_{n \in \mathbb{N}}}\right.$ is a normal family. That is, every sequence has subsequence converging locally uniformly.

Fatou and Julia Sets

Let $f: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ be rational of degree $d \geq 2$.
$z \in \hat{\mathbb{C}}$ is in the Fatou set F_{f} if there exists some neighborhood U of z such that $\left\{\left.f^{n}\right|_{U\}_{n \in \mathbb{N}}}\right.$ is a normal family. That is, every sequence has subsequence converging locally uniformly. $J_{f}=\widehat{\mathbb{C}} \backslash F_{f}$ is the Julia set.

Fatou and Julia Sets

Let $f: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ be rational of degree $d \geq 2$.
$z \in \hat{\mathbb{C}}$ is in the Fatou set F_{f} if there exists some neighborhood U of z such that $\left\{\left.f^{n}\right|_{U\}_{n \in \mathbb{N}}}\right.$ is a normal family. That is, every sequence has subsequence converging locally uniformly.
$J_{f}=\hat{\mathbb{C}} \backslash F_{f}$ is the Julia set.
Morally: nearby points in F_{f} have similar dynamics, and points in J_{f} display chaotic behavior: sensitive to initial conditions.

Fatou and Julia Sets

Figure: Julia set for $z^{2}-\frac{1}{4}$

Fatou and Julia Sets

Figure: Julia set for $z^{2}-1$

Fatou and Julia Sets

Figure: Julia set for $z^{2}+(0.023+0.684 i)$

Fatou and Julia Sets

Figure: Julia set for $z^{2}+i$

Fatou and Julia Sets

Figure: Julia set for a cubic rational map

Fatou and Julia Sets

Figure: Julia set of $\left(z^{2}-c\right) /\left(z^{2}+c\right)$ for $c=-1.3$

Properties of Fatou and Julia Sets

Assume $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ of degree $d \geq 2$.

- F_{f} is open and J_{f} is closed;
- F_{f} and J_{f} are totally invariant;
- $J_{f} \neq \emptyset$;
- For all $z \in J_{f}$, the preimages of z are dense in J_{f};
- For generic $z \in J_{f}$, the orbit of z is dense in J_{f};
- J_{f} is the closure of the repelling periodic orbits;
- If int $J_{f} \neq \emptyset$, then $J_{f}=\hat{\mathbb{C}}$.

Polynomials

Case of $P: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ polynomial: easier to describe.

Polynomials

Case of $P: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ polynomial: easier to describe. ∞ is an attracting fixed pont: basin $\mathcal{A}(\infty)$, and $J=\partial \mathcal{A}(\infty)$.

Polynomials

Case of $P: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ polynomial: easier to describe. ∞ is an attracting fixed pont: basin $\mathcal{A}(\infty)$, and $J=\partial \mathcal{A}(\infty)$.

Theorem (Fatou)
The Julia set J is connected if and only if for all critical points c of P $P^{n}(c) \nrightarrow \infty$.
If, for some critical point $c, P^{n}(c) \rightarrow \infty$, then J_{f} has uncountably many connected components.

If, for all critical points $c, P^{n}(c) \rightarrow \infty$, then J is totally disconnected.

The Mandelbrot Set

Every quadratic polynomial $P: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ is conjugate to one of the form

$$
P_{c}(z)=z^{2}+c, \quad c \in \mathbb{C} .
$$

The Mandelbrot Set

Every quadratic polynomial $P: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ is conjugate to one of the form

$$
P_{c}(z)=z^{2}+c, \quad c \in \mathbb{C} .
$$

Same critical point 0 for all P_{c}. Locus of connectivity:

$$
\begin{aligned}
M & :=\left\{c \in \mathbb{C} \mid P_{c}^{n}(0) \nrightarrow \infty\right\} \\
& =\left\{c \in \mathbb{C} \mid P_{c}^{n}(0) \text { stays bounded }\right\} \\
& =\left\{c \in \mathbb{C} \mid J_{P_{c}} \text { is connected }\right\}
\end{aligned}
$$

M is the Mandelbrot Set!

The Mandelbrot Set

Figure: The Mandelbrot set

The Mandelbrot set

Main cardioid: $c \in M$ for which 0 converges to attracting fixed point.

The Mandelbrot Set

$c \in \mathbb{C}$ is a hyperbolic parameter if 0 converges to some attracting periodic cycle. In this case, $c \in \operatorname{int} M$.

The Mandelbrot Set

$c \in \mathbb{C}$ is a hyperbolic parameter if 0 converges to some attracting periodic cycle. In this case, $c \in \operatorname{int} M$.

Conjecture (Density of Hyperbolicity)
Every parameter $c \in \operatorname{int} M$ is hyperbolic.

The Mandelbrot Set

$c \in \mathbb{C}$ is a hyperbolic parameter if 0 converges to some attracting periodic cycle. In this case, $c \in \operatorname{int} M$.

Conjecture (Density of Hyperbolicity)
Every parameter $c \in \operatorname{int} M$ is hyperbolic.
Theorem (MLC $\Longrightarrow \mathrm{DH}$)
If the Mandelbrot set is locally connected, every parameter $c \in \operatorname{int} M$ is hyperbolic.

References

- Wolf Jung: https://mndynamics.com/indexp.html
- D. S. Alexander - A History of Complex Dynamics From Schröder to Fatou and Julia
- J. Milnor - Dynamics in One Complex Variable
- Adrien Douady \& John H. Hubbard - Exploring the Mandelbrot set. The Orsay notes
- A. F. Beardon - Iteration of Rational Functions Complex Analytic Dynamical Systems

