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2024

The following consists of solutions (mostly complete, a few partial) to
problems in Milnor’s Dynamics in One Complex Variable ([2]). I initially
started with the second edition, but for later chapters I also used the third.
I also include personal thoughts and clarifications for some arguments that I
thought were vague or could use more explaining.
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1 Simply Connected Surfaces

Problem (1-d. Conjugacy classes in G(H)). Show that every automorphism
of H without fixed points is conjugate to a unique transformation of the form
w 7→ w+1 or w 7→ w−1 or w 7→ λw with λ > 1; and show that the conjugacy
class of an automorphism g with fixed point w0 ∈ H is uniquely determined
by the derivative λ = g′(w0), where |λ| = g′(w0).

Proof. If g has a fixed point w0, then by equivalently considering g : D→ D
and conjugating g by

z 7→ z − a
1− az

,

for a the image of w0 in D, we may assume g fixes the origin 0. Hence by
Schwarz’s lemma g is a rotation, where g′(0) = eiθ = λ. Since conjugation by
holomorphic maps must preserve derivatives at fixed points, this λ is uniquely
determined by the conjugacy class.

Now suppose g has no fixed points in H. If g, as a Möbius transformation
on Ĉ, has a unique fixed point on R̂, we may conjugate by a projective linear
map on R̂, which preserves H, to assume the fixed point is at ∞. But then
g is of the form az + b, and since it has no fixed points on C, g is of the
form g(z) = z + b. Since it must preserve H, we must have b ∈ R. Then,
by conjugating by h(z) = 1

|b|z, we obtain z ± 1, depending on whether b is
positive or negative. The uniqueness of the conjugacy class is easily seen,
as z 7→ z + 1 cannot be conjugate to z 7→ z − 1: if a fractional linear
transformation h conjugated the maps, an easy calculation gives us that its
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determinant would have to be −1, whereby we may take it to be an element
of PSL(2,R)/{±I}.

If g had two fixed points on R̂, by an appropriate conjugation we may
assume they are 0 and∞, and a similar analysis would give us that g(z) = λz,
for λ > 0, in order to preserve H. We may assume λ ̸= 1 so that it is not the
identity. It is also easy to see that we have a conjugation between z 7→ λz
and z 7→ λ−1z, and no other maps in this class.

Problem (1-h. Convergence to zero). If a holomorphic map f : D → D
fixes the origin, and is not a rotation, prove that the sucessive images fn(z)
converge to zero for all z ∈ D, and prove that this convergence is uniform on
all compact subsets of D.

Proof. Since f is not a rotation, by Schwarz’s lemma, we have that |f ′(z)| <
1 for all z ∈ D, and |f(z)| < |z| for all z ̸= 0. Hence, in any compact
subset K ⊂ D, by continuity of f , there exists some λ = λK < 1 such that
|f(z)| ≤ λ|z| for z ∈ K. Hence |fn(z)| ≤ λn|z| ≤ λn for z ∈ K, so that
fn → 0 uniformly in K.

2 Universal Coverings and the Poincaré Met-

ric

Problem (2-b. Lifting to the Universal Covering). If S ∼= D/Γ and S ′ ∼=
D/Γ′ are hyperbolic surfaces, show that any holomorphic map f : S → S ′

lifts to a holomorphic map F : D → D, unique up to composition with an
element of Γ′. Show that f induces a group homomorphism from Γ to Γ′

satisfying the identity
F ◦ γ = γ′ ◦ F,

for every γ ∈ Γ. Show that f is a covering map if and only if F is a conformal
automorphism.

Proof. Suppose for now that f is only continuous. If p : D → S and p′ :
D → S ′ are the convering projections, then f ◦ p : D → S ′ is a continuous
map. As D is simply connected, fixing z0 ∈ D and w ∈ p′−1(f(p(z0))), by the
theory of covering spaces there exists a unique continuous map F : D → D
that lifts p ◦ f to D and such that F (z0) = w. Since any other element of
the fiber w ∈ p′−1(f(p(z0)) is given by w′ = γ′w for a unique γ′ ∈ Γ′, and
γ′ ◦ F satisfies the condition, we indeed have uniqueness of the lift up to
post-composition with elements of Γ′.
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If γ ∈ Γ, then F ◦ γ is also a lift of γ, and by the above, there exists a
unique γ′ ∈ Γ′ such that F ◦ γ = γ′ ◦ F . This resulting map F : Γ→ Γ′ is a
group homomorphism, as can be see from

F ◦ γ ◦ η = γ′ ◦ F ◦ η = γ′ ◦ η′ ◦ F.

We note the following. If F and G = σ ◦ F are two lifts of f , where
σ ∈ Γ′, then the group homomorphisms F ,G are related by the following:

F ◦ γ = F(γ) ◦ F, G ◦ γ = G(γ) ◦G
=⇒ σ ◦ F ◦ γ = G(γ) ◦ σ ◦ F

=⇒ σ ◦ F(γ) ◦ F = G(γ) ◦ σ ◦ F,

so that, by uniqueness of the lifts up to post-composition,

G(γ) = σF(γ)σ−1.

Hence the group homomorphism from the fundamental groups of S and S ′

is not uniquely given by just f , but any two such group homomorphisms are
related by post-conjugation in Γ′, corresponding to distinct choices of lifts of
f .

A case of note is when f is a homeomorphism; then, by functioriality, it
is easily deduced that the lifts F will be homeomorphisms, and the group
homomorphism F : Γ → Γ′ will be an isomorphism. Again, this is not
uniquely given by f , but only up to post-conjugation.

From the theory of covering spaces, F is a homeomorphism if and only
if f is a covering map, and if F is holomorphic, then it will be a conformal
automorphism of D.

Problem (2-f. Infinite band, cylinder, and annulus). Define the infinite
band B ⊂ C of height π to be the set x+ iy ∈ C : |y| < π/2}. Show that the
exponential map carries B isomorphically onto the right-half plane. Show
that the Poincaré metric on B takes the form ds = |dz|/ cos y.

Show that the real axis is a geodesic whose Poincaré arclength coincides
with its usual Euclidean arclength, and show that each translation z 7→
z + c is a hyperbolic automorphism of B having the real axis as its unique
invariant geodesic. For any c > 0, form the quotient cylinder Sc = B/(cZ) by
identifying each z ∈ B with z + c. By definition, the modulus mod (Sc) of
the resulting cylinder is the ration π/c of height to circumference. Show that
this cylinder, with the Poincaré metric, has a unique simple closed geodesic,
with length c = π/ mod (Sc).

Show that Sc is conformally isomorphic to the annulus Ar = {z ∈ C : 1 <
|z| < r} where log r = 2π2/c. Conclude that mod (Ar) = log r/2π is a
conformal invariant.
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Proof. We see that

exp(x+ iy) = ex(cos y + i sin y) = ex cos y + iex sin y,

so that, for every u+ iv with u > 0, we have unique x and y with |y| < π/2
such that x + iy maps to u + iv, considering the polar form of u + iv. The
resulting map will be bijective and holomorphic, so that f : z 7→ i exp(z) is
a conformal isomorphism from B to H. The pullback of the Poincaré metric
is

f ∗
(

1

v2
|dw|2

)
=

1

|iex cos y|
|iez||dz| = 1

cos y
|dz|.

The conformal automorphism, being an isometry, maps the real axis onto
the positive imaginary axis on H, and since it is a geodesic, the real axis
will also be. Given that for y = 0, cos y = 1, we have that the inclusion
R ⊂ B pulls back the metric on B to the standard metric |dx| on R. The
translations τc(z) = z + c, for c ∈ R, are conformal isometries of B, since
they are conformal automorphisms which pullback the metric on B to itself.

The real axis R must be the unique geodesic in B invariant under τc, as τc
maps to the dilation w 7→ ecw in H. We know the geodesics of H are vertical
lines or the semicircunferences orthogonal to the real axis, and the only one
that is invariant by a positive scaling is the imaginary axis.

Under the projection p : B → Sc, the real axis becomes a simple closed
geodesic in Sc. Suppose γ were another closed geodesic in Sc, and let γ̃
denote one of its lifts to B. We see that all lifts of γ are in fact given by
τnc ◦ γ̃, for n ∈ N.

If γ : R→ Sc is a closed geodesic, there must exist t0, t1 ∈ R distinct such
that γ(t0) = γ(t1), γ

′(t0) = γ′(t1). By uniqueness of the geodesic equation, we
have that γ(t) = γ(t+(t1− t0)) for all t ∈ R, so that γ is periodic. Supposing
that γ is not constant, it has a minimal period δ, so that γ(t+ δ) = γ(t) for
all t, and is injective in [t, t+ δ).

We then have that γ̃(δ) = γ̃(0) + nc for some n ∈ N. If n = 0, then γ̃
forms a closed C1 loop in B ⊂ C, hence must at some point have strictly
vertical tangent vector. But by uniqueness of the geodesic equation, γ̃ must
be a vertical line, a contradiction. Hence n ̸= 0. Moreover, since γ̃(t+δ)−nc
is also a lift of γ having the same starting point as γ̃ at t = 0, we have more
generally that γ̃(t + δ) = γ̃(t) + nc. This shows that γ̃ stays a bounded
hyperbolic distance of the real axis R as it goes to infinity.

In H, this means that the geodesic η corresponding to γ̃ satisfies η(t+δ) =
ecnη(t) for all t. This property cannot be satisfied either by a vertical line
that is not the imaginary axis, nor by a circumference orthogonal to ∂H;
hence we obtain a contradiction. (This in fact proves that the projection of
R is the unique closed geodesic in Sc, not just simple.)

5



The length of this unique simple closed geodesic is the same as the eu-
clidean length of the segment on which the projection to Sc is injective, hence
c. Finally, consider exponential map

exp : {x+ iy ∈ C : 0 < x < log r} → Ar,

which is a covering map on this strip S. This strip is naturally conformally
isomorphic to B by the map h : B → S given by

h(z) = (log r)(
i

π
z + 1).

We note that exp ◦h is injective when 0 ≤ x < c, and we get a quotient map
Sc → Ar which is going to be a conformal isomorphism.

Problem (2-g. Abelian Fundamental Groups). Show that every hyperbolic
surface with abelian fundamental group is conformally isomorphic either to
the disk D, or to the punctured sphere D \ {0}, or to an annulus Ar for some
uniquely identified r > 1. Show that this annulus has a unique simple closed
geodesic, which has length l = 2π2/ log r. On the other hand, show that
the punctured disk D \ {0} has no closed geodesic. Show that the conformal
automorphism group G(D \ {0}) of a punctured disk is isomorphic to the
circle group SO(2), while the conformal automorphism group of an annulus
is isomorphic to the non-abelian group O(2). What is the automorphism
group for C \ {0}?

Proof. Suppose S ∼= D/Γ, where Γ is abelian, discrete and has no fixed
points. If Γ = {e}, then S ∼= D, so we assume Γ is not the trivial subgroup.
Since it has no fixed points, it contains no elliptic elements. We know that
two non-identity elements in G(D) commute if and only if they have the same
fixed point set in D. So either this fixed point set shared by all elements of Γ
is a unique point in ∂D, where Γ consists only of parabolic elements, or two
points in ∂D, so that Γ consists only of hyperbolic elements.

In the first case, we may assume that the fixed point is ∞ ∈ ∂H, so that
Γ is a discrete subgroup of translations of R. But then it must be isomorphic
to Z and be generated by a single translation. In the second case, we may
assume the fixed points are 0 and ∞ in ∂H. Hence the hyperbolic elements
must preserve the geodesic from 0 to ∞, the positive imaginary axis, acting
by dilations. In the band model B, they act by translations on the real axis,
so similarly Γ ∼= Z and they are generated by a single translation.

If γ is a generator for Γ, it must either be a parabolic or hyperbolic
element of G(D). Conjugate discrete subgroups of G(D) without fixed points
give rise to conformally isomorphic Riemann surfaces via the mapping
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D/Γ → D/(σΓσ−1)
[a] → [σa]

so we only care about the conjugacy class of γ. If γ is parabolic, then by
taking γ−1 also a generator of Γ, we may assume it is conjugate to w 7→
w + 1 in H. The map f : H → D \ {0} given by f(z) = exp(2πiz) is a
universal covering map of D\{0}, which descends to an isomorphism via the
identification by translation z ∼ z + 1. Hence S ∼= D \ {0}.

If γ is hyperbolic, it is a translation by c on the band model, where we
have proved that S ∼= Ar, for the specified length. We have also already
shown the uniqueness of the simple closed geodesic, as this is a property of
Ar; it is the projection of the geodesic that the hyperbolic elements of Γ
preserve.

Suppose γ is a closed geodesic in D \ {0} ∼= H/Z. If γ̃ is a lift of γ to
H, by similar arguments as before, there exists some n ∈ N and some δ > 0
such that, for all t ∈ R, γ̃(t+ δ) = γ̃(t)+n. But no geodesic in H can satisfy
this property for all t.

It is easy to see that SO(2) ⊆ G(D\{0}), acting by rotational symmetries
around 0. These correspond to translations w 7→ w + t in H/Z. Suppose
σ ∈ G(D \ {0}). By problem 2-b, σ lifts to a conformal automorphism σ̃ of
H, and a group isomorphism F : Z→ Z such that

σ̃(w + 1) = σ̃(w)± 1,

depending on which generator the translation w 7→ w+ 1 which generates Z
gets mapped to. But it must be +1, since w 7→ w + 1 and w 7→ w − 1 are
not conjugate in H. Hence

σ̃(w + 1) = σ̃(w) + 1,

commuting with translations. Then σ̃ ∈ PSL(2,R)/{±I} must itself be a
translation, which indeed descends to a conformal automorphism of D \ {0}
of the form given by SO(2).

Now consider G = G(Ar), r > 1. Any σ ∈ G lifts to a conformal auto-
morphism σ̃ : B → B such that

σ̃(z + l) = σ̃(z)± l,

or equivalently, an automorphism of H such that

σ̃(λw) = λ±1σ̃(w).

This is a different case because λz and λ−1z are indeed conjugate in G(H).
The resulting characterization of G(Ar) will be O(2), with an element that
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“flips” the annulus inside out, and interchanges the boundaries, while simul-
taneously preserving orientation.

(I don’t want to do the case G(C \ {0}).)

Problem (2-k. No non-trivial holomorphic attractors). If K ⊂ S is compact
with f(K) = K, and if f maps some connected hyperbolic neighborhood U
of K into a proper subset of itself, show that f must be stricly contracting on
K with respect to the metric dU , and hence that K must consist of a single
point.

Proof. Considering U as a hyperbolic Riemann surface, since f : U → U
is holomorphic and non-surjective, we have that, by Pick’s theorem, there
exists λ < 1 such that, for all p, q ∈ K, dU(f(p), f(q)) ≤ λdU(p, q). Hence fK
is a uniform contraction, and by the Banach fixed point theorem, all points
must convergence to a fixed point under iteration. As fn(K) = K, K must
consist of this single point.

Problem (2-m. The Picard theorem near infinity.). Prove the following
statement in two steps, as indicated.

Theorem 2.1 (Picard). Any holomorphic map f : D \ {0} → Ĉ \ {a, b, c} to
the triply punctured sphere extends to a holomorphic map from D to Ĉ.

(1) Prove the statement for the special case where f(z) converges to a as
z → 0.

(2) On the other hand, suppose that f(z) does not converge to a, b or c as
z → 0. Show that there must exist some point p ∈ Ĉ \ {a, b, c} which
is an accumulation point of images f(z) as z → 0. Using the Poincaré
metric as described in example 2.8, show that the image of a small circle
|z| = r lies in a small neighborhood of p. Conclude that f restricted
to this circle lifts to the universal covering space of Ĉ \ {a, b, c}, and
hence that f on the entire punctured disk lifts to this covering space,
and use this to complete the proof.

(3) Now apply this result for a circle centered at∞ to prove the following.

Theorem 2.2 (Strong Picard Theorem). If f : C→ C is holomorphic
but not a polynomial, then for every neighborhood C \Dr of infinity the
image f(C \Dr) omits at most a single point of C. In fact, f takes on
every value in C, with at most one exception, infinitely often.
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Proof. (1) If f(z)→ a as z → 0, then a small disk neighborhood of 0 gets
mapped into a bounded disk around a. (In fact, by composing f with a
Möbius transformation, we may assume a = 0.) Hence, by Riemann’s
removable singularity theorem, we have a holomorphic extension of f
by setting f(z) = a.

(2) Let Kn = f(D1/n \ {0}) ⊆ Ĉ, where the Kn form a decreasing sequence

of compact connected sets in Ĉ. We then find that
⋂
n≥1Kn = K is

compact, connected and non-empty in Ĉ. By our hypotheses, K cannot
be the singleton sets {a}, {b} and {c}, so that it must contain some
point p ∈ Ĉ \ {a, b, c}, being an accumulation point of some sequence
f(zn) as zn → 0.

Recall that D\{0} and Ĉ\{a, b, c} are hyperbolic surfaces, contracting
the respective Poincaré distances. As 2π/| log r| is the length of the
circle |z| = r in D \ {0}, it gets mapped to a curve γr of length l(r) ≤
2π/| log r| → 0 as r → 0. Let Bε(p) ⊂ Ĉ\{a, b, c} be a neighborhood of
p in Ĉ\{a, b, c}, so that for any r0 > 0, we may find a point ẑ ∈ D\{0}
such that |ẑ| < r0 and d(ẑ, p) < ε. Now consider the circle of radius
|ẑ|, which maps to a curve γ|ẑ| in Ĉ \ {a, b, c} of length ≤ 2π/| log r0|.
This implies that for any q in the image of this curve, we have

d(p, q) ≤ d(p, ẑ) +
π

| log r0|
≤ ε+

π

| log r0|
< 2ε,

if we take r0 sufficiently small. Hence the image of this circle gets
mapped to a neighborhood B2ε(p) of p.

If ε is sufficiently small, B2ε(p) is simply connected, so that the image of
this curve is nullhomotopic in Ĉ\{a, b, c}. But since this circle generates
the fundamental group of D \ {0}, the map f : D \ {0} → Ĉ \ {a, b, c}
is trivial on the fundamental groups. This implies that it lifts to the
universal cover f̃ : D \ {0} → D, and therefore extends to a map

f̃ : D → D. This means that by extending f(0) = π(f̃(0)), we get
obtain the desired result, as this extension is continuous and therefore
holomorphic.

(3) On the hypotheses of the strong Picard theorem, suppose that for some
r > 0 we have that f(C \ Dr) omits two values of C, say a and b. We
then get a holomorphic map f : C \ Dr → Ĉ \ {a, b,∞}, where C \ Dr

is conformally isomorphic to a punctured disk. By Picard’s theorem,
since f does not extend continuously to ∞, otherwise it would be a
polynomial, we get that extends continuously by f(∞) = c, a finite
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value (possibly equal to a or b). But this implies that f is bounded and
entire, hence constant, a contradiction. Therefore f(C \Dr) must omit
at most one value, being the same for all r′ ≥ r. But by taking larger
radii, every other value must be taken infinitely often, as |z| → ∞.

The result above in fact generalizes to show that if f : D \ {0} → X is a
holomorphic map to a compact hyperbolic Riemann surface, then it extends
to f : D → X. Moreover, if X ′ = X \ {p1, . . . , pn} is a hyperbolic Riemann
surface of finite type, that is, X ′ is compact with a finite number of punctures,
then any holomorphic map f : D \ {0} → X ′ extends to a holomorphic map
f : D→ X, where it either extends to X ′ itself or to one of the punctures.

3 Normal Families: Montel’s Theorem

Recall the definition of a normal family according to Milnor: for S and T
Riemann surfaces, a family F ⊆ C(S, T ) is normal if every sequence (fn) ⊂ F
either has a subsequence which converges locally uniformly to some function
(which must be continuous), or has a subsequence which diverges locally
uniformly, that is, for the subsequence fnj

and all compact subsets K ⊆ S,
K ′ ⊆ T , there exists N ∈ N such that for all j ≥ N , fnj

(K) ∩ K ′ = ∅. In
other words, the images of every compact subset of S eventually escape any
other given compact subset of T .

As the space C(S, T ), which contains Hol(S, T ) as a closed subspace, is
Hausdorff and metrizable with respect to the topology of locally uniform con-
vergence (because S is σ-compact), sequential compactness and compactness
are equivalent notions in C(S, T ). Hence a subset G ⊂ Hol(S, T ) is pre-
compact if and only if every sequence in G has a locally uniformly convergent
subsequence. Note that this excludes the case of locally uniform divergence
as above, which allows for more families to be normal. (We note that Ahlfors’
more general definition also allows normal families to have subsequences di-
verging locally uniformly to infinity.)

Problem (3-e. Local Normality). Show that normality is a local property.
More precisely, let S and T be any Riemann surfaces, and let {fα} be a family
of holomorphic maps from S to T . If every point of S has a neighborhood
U such that the collection {fα|U} of restricted maps is a normal family in
Hol(U, T ), show by a diagonal argument, similar to the proof of 3.2, that the
family {fα} is itself normal.
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Proof. Let {fn} be a sequence in the family {fα}, which we want to prove
either has a subsequence which converges locally uniformly, or has a subse-
quence which diverges locally uniformly to infinity in T .

Fix a countable dense subset {sj} of S. For all sj, we have a neighbor-
hood Uj such that the family {fα|Uj

} is normal. In particular, there is a
subsequence (fnk

) of the (fn) such that (fnk
|U1) either converges locally uni-

formly, or diverges locally uniformly. If it converges locally uniformly, call
g1 : U → T the holomorphic limit. Considering now U2, there is some subse-
quence (fnkl

) of (fnk
) that either converges locally uniformly in U2 to some

g2, or diverges locally uniformly. Proceeding by induction and taking a diag-
onal subsequence, we obtain a subsequence (hn) of (fn) such that, for each
j, (hn|Uj

) either converges locally unformly to some holomorphic function
gj : Uj → T , or diverges locally uniformly.

Let V ⊆ S be the set of points p for which hn(p) diverges to infinity. By
the above construction, V is open, where if p ∈ V then p belongs to some Uj
where hn|Uj

diverges locally uniformly. Moreover, it is also closed; Suppose
pi → p, where hn(pi) → ∞. Then p ∈ Uj for some Uj, and eventually
the points pi are contained in Uj. if hn|Uj

→ gj locally uniformly, then
hn(pi) → gj(pi), which cannot be the case as hn(pi) → ∞. Hence hn|Uj

diverges locally uniformly, and hn(p)→∞.
The above implies that V is open and closed, and since we assume S

is a connected Riemann surface, either V = ∅ or V = S. Suppose first
that V = ∅, so that for all j, hn|Uj

→ gj locally uniformly. Because for every
p ∈ S the limit limn→∞ hn(p) is unique if it exists, We have a globally defined
function g : S → T that is the pointwise limit of hn, and g|Uj

= gj. Hence
g is holomorphic. Moreover, for p ∈ S, we know that p ∈ Uj, and for some
compact neighborhood Nj ⊂ Uj of p, hn|Nj

→ gj|Nj
= g|Nj

uniformly, so that
hn converges locally uniformly to g.

Now assume V = S. Consider K ⊆ S and K ′ ⊆ T compact subsets.
Letting Nj be compact neighborhoods of the sj in Uj, there are finitely many
Nj covering K. By definition of locally uniform divergence, there exists nj
such that, for all n ≥ n, hn(Nj)∩K ′ = ∅. Taking the maximum nmax over all
the finitely many nj, we have consequently that hn(K)∩K ′ = ∅ for n ≥ nmax,
hence the hn diverge locally uniformly.

An observation to the above proof is that the hypothesis that S be con-
nected is necessary, otherwise we could consider a family of holomorphic
functions fn ⊔ gn : S1 ⊔ S2 → T which is locally uniformly convergent on
S1, but locally uniformly divergent on S2, and the family will be neither on
S1⊔S2. Hence, in more generality, if the family is normal on a neighborhood
of every point, it will be normal on every connected component of S.
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The above complications naturally vanish in the case of T being compact,
where we obtain the corrolary:

Corollary 3.1. If T is compact and U ⊆ S is open, then F|U ⊂ Hol(U, T )
is normal if and only if, for all z ∈ U , there is some neighborhood Uz of z in
U such that F|Uz ⊂ Hol(Uz, T ) is normal.

This corollary can be used later to “piece together” normality of open
subsets to invoke normality on bigger ones, even if disconnected.

Problem (3-f. Normality and Derivataives). Let f : S → T be holomorphic.
Given Riemannian metrics on the Riemann surfaces S and T , we can define
the norm of the derivative at a point s ∈ S to be the real number ∥f ′(s)∥ ≥ 0
such that the induced linear mapping from TsS to Tf(s)T carries vectors of
length 1 to vectors of length ∥f ′(s)∥. If T is compact, show that a family F
of maps f : S → T is normal if and only if the collection of norms ∥f ′(s)∥ is
uniformly bounded as f varies over F and s varies over any compact subset
of S.

Proof. Suppose F ⊆ Hol(S, T ) is normal. We want to show that, for any
compact set K,

sup
s∈K, f∈F

∥f ′(s)∥ < +∞.

Suppose that there exists a compact set K such that this supremum is not
finite, so there exists a sequence (fn) ⊂ F and (sn) ⊂ K such that ∥f ′

n(sn)∥ →
∞. By taking subsequences, we may assume that fn → f locally uniformly,
and that sn → s ∈ K. Let U be a compact coordinate neighborhood of s,
where we may also assume sn ∈ U for all n. By continuity of the norm,
there exists M < +∞ such that, for all p ∈ U , ∥f ′(p)∥ < M . As fn|U → f
uniformly, and since uniform convergence of holomorphic functions implies
uniform convergence of derivatives, we have that ∥f ′

n∥ → ∥f ′∥ uniformly in
U (?). This contradicts that ∥f ′

n(sn)∥ → ∞.
Conversely, suppose that over any compact set, ∥f ′(s)∥ is uniformly

bounded for all f ∈ F . Let N ⊆ S be a compact connected (normal
geodesic) neighborhood of some p0 ∈ S, and (fn) ⊂ F a sequence. Since
supf∈F , s∈N ∥f ′(s)∥ is bounded above by some λ, We have that if γ is a
constant speed path from p0 to p in γ, we have that

L(f ◦ γ) =
∫
γ

∥f ′(γ(t))∥dt ≤ λL(γ).

Hence d(f(p), f(p0)) is bounded above by some constant D, for all p ∈ N
and f ∈ F . As T is compact, (fn(p)) has a convergent subsequence fnk

(p)→
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q ∈ T . The above reasonings imply that all fnk
, for sufficiently large k, map

the compact set N into the compact set BD+ε(q) in T . Hence the family
{fnk
} is normal, and has a locally uniformly convergent subsequence.

Theorem 3.2. Let S and T be Riemann surfaces, where S is connected.
Let fn : S → T be a sequence of continuous functions that diverge locally
uniformly to infinity in T . Then there exists a subsequence (fnk

) and an end
e ∈ Ends(T ) such that (fnk

) converges uniformly to e on compact subsets.

Proof. Let (Ki) be a compact exhaustion of S by connected full compact
sets, and analogously (Lj) of T . By definition, given i and j, there exists
some N = Ni,j ∈ N such that, for all n ≥ N , f(Ki) ∈ T \ Lj. As Ki is
connected, f(Ki) also is, so Ki gets mapped by fn to a single component Un

i,j

of T \ Lj. Since there are finitely many components of T \ Lj, by taking a
subsequence of the fn, we may assume that this component Ui,j = Un

i,j is the
same for all n ≥ Ni,j.

Consider i′ > i. For this subsequence of the fn, by connectedness of
Ki′ , for all big n the component of T \ Lj which fn(Ki′) belongs to must be
the same Ui,j. Hence starting from i = 1, we may take Uj = U1,j to be a
component of T \Lj defined by the compact exhaustion for which eventually
all points of S get mapped to.

Now, if j′ > j, by taking another subsequence of the fn, we produce
a component Uj′ of T \ Lj′ such that Uj′ ⊆ Uj, and all of S eventually
gets mapped to Uj′ (uniformly on compact sets). By proceeding inductively,
taking subsequences and finally taking a diagonal subsequence, we obtain a
decreasing chain of components of the T \Lj, which in fact defines an end.

4 Fatou and Julia: Dynamics on the Rie-

mann Sphere

Lemma 4.1 (Details on the Invariance Lemma). If f : S → S is a holo-
morphic map on a compact Riemann surface S , the Julia set J(f) is fully
invariant, that is, z ∈ J ⇐⇒ f(z) ∈ J , or equivalently, f−1(J) = J .

Proof. It is equivalent to show that the fatou set F is fully invariant. Suppose
U ⊆ F is a connected open set; we show that {fn|f−1(U)} is a normal family,
which will imply that f−1(U) ⊆ F . Let (fnj) be any sequence of iterates,
and consider the sequence (fnj−1), which has a subsequence (fnjk

−1) that
converges locally uniformly in U to some g. Let K ⊆ f−1(U) be compact, so

13



that f(K) ⊆ U is compact. Then, fixing a metric on S,

sup
x∈K

d(fnjk (x), (g ◦ f)(x)) = sup
x∈K

d(fnjk
−1(f(x)), g(f(x)))

= sup
y∈f(K)

d(fnjk
−1(y), g(y))→ 0,

so that the subsequence fnjk converges uniformly in K to g ◦f . Hence (fnjk )
converges locally uniformly to g ◦ f in f−1(U).

Now let z ∈ F and U a connected precompact neighborhood of z such that
{fn|U} is a normal family. As f is open, f(U) is a connected precompact
neighborhood of f(z). Moreover, we may assume f |U : U → f(U) is a
branched finite covering map. Let (fnj) be some sequence of iterates, and
consider (fnj+1). Then there is some subsequence (fnjk

+1) that is locally
uniformly convergent on U to some g. Pointwise, for all x ∈ U ,

fnjk
+1(x) = fnjk (f(x))→ g(x).

Now, if y ∈ f(U), then y = f(x) for x ∈ U , and

fnjk (y) = fnjk (f(x))→ g(x).

Hence the functions fnjk , in f(U), converge pointwise to a function h such
that h◦f = g. By our hypotheses on U , if K ⊆ f(U) is compact, (f |U)−1(K)
is compact. Therefore if y ∈ K, by taking f(x) = y,

d(fnjk (y), h(y)) = d(fnjk
+1(x), g(x))→ 0

uniformly for x ∈ (f |U)−1(K), so that fnjk converges to h uniformly in K.
As this compact K is arbitrary, we have locally uniform convergence, and
then f(z) ∈ F , completing the proof of complete invariance.

Lemma 4.2 (Details on the Iteration Lemma). For any k > 0, the Julia set
J(fk) coincides with J(f).

Proof. Naturally F (f) ⊆ F (fk), since if U is an open set such that {fn|U}
is normal, and (fknj) is any sequence in the family {fkn}, then it is a se-
quence in the family {fn}, and therefore has a locally uniformly convergent
subsequence. Hence {fkn|U} is normal.

Now suppose z ∈ F (fk), and U is a connected neighborhood of z on
which {fkn|U} is a normal family. Then {fkn|U} is contained in a compact
set K ⊆ Hol(U, S). Post-composition with f in Hol(U, S) is a continuous
operation, so f i ◦ K is compact in Hol(U, S). Then every iterate of f is
contained in the set

K ∪ (f ◦K) ∪ (f 2 ◦K) ∪ . . . ∪ (fk−1 ◦K) ⊂ Hol(U, S),

and the family {fn|U} is normal. Therefore z ∈ F (f).

14



Note the following fact:

Lemma 4.3. If f : S → S is holomorphic and g ∈ G(S), then we have a
homeomorphism

J(f)←→ J(g ◦ f ◦ g−1)

given by z 7→ g(z).

Proof. Note that (gfg−1)n = gfng−1, and the family {gfng−1|U} is normal
for an open set U if and only if {fn|g(U)} is normal, because a sequence of
iterates fnj converges uniformly on some compact set g(K) to h if and only
if gfnjg−1 converges uniformly to ghg−1 on K.

Problem (4-a. Degree One). If f : Ĉ→ Ĉ is rational of degree d = 1, show
that the Julia set J(f) is either vacuous, or consists of a single repelling or
parabolic fixed point.

Proof. As f is rational of degree d = 1, we have that f ∈ G(Ĉ). Every
Möbius transformation has either a single fixed point or two fixed points. By
conjugating f by some other Möbius transformation taking the fixed points
to 0 and ∞ or to only ∞, we may assume that f is of the form z 7→ λz or
z 7→ z+ b, where λ, b ∈ C. In the first case, by possibly conjugating the map
by 1/z, we may assume |λ| ≤ 1. If |λ| < 1, 0 is an attracting fixed point with
multiplier λ, and any compact set in C converges to 0 uniformly, where∞ is
the unique point in the Julia set, being a repelling fixed point.

If on the other hand |λ| = 1, f is a rotation about 0. If λ = e2πip/q, then
some iterate of f is the identity and the Julia set is empty. If λ = e2πiθ where
θ /∈ Q, then

fn(z) = λnz = e2πinθz,

and we show that F (f) = Ĉ. This is because λn is dense in S1, hence, if
(fnj) is a subsequence of iterates, there is some subsequence fnjk such that
λnjk → µ ∈ S1. Therefore for K ⊂ C compact,

d(λnjkz, µz) ≤ |z||λnjk − µ| ≤ C|λnjk − µ| → 0

uniformly. That ∞ ∈ F (f) is easy to see from an uniformizing parameter
around ∞.

If f(z) = z + b, by conjugating z by z/b we may assume f(z) = z + 1.
Any compact set in C converges uniformly under iteration to ∞, but any
neighborhood of infinity has points which first repel from∞ before converging
to it. We have seen that a parabolic fixed point belongs to the Julia set.
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Problem (4-b. Maps with grand orbit finite points). Now suppose that f is
a rational map of degree d ≥ 2. Show that f is actually a polynomial if and
only if f−1(∞) = {∞}, so that the point at infinity is a grand orbit finite
fixed point for f . Show that f has both zero and infinity as grand orbit finite
fixed points if and only if f(z) = αzn, where n = ±d and α ̸= 0. Conclude
that f has grand orbit finite points if and only if it is conjugate, under some
factional linear change of coordinates, either to a polynomail or to the map
1/zd.

Proof. If f is a polynomial, it is clear that C is fully invariant by f , hence
{∞} is too. Now suppose f−1(∞) = {∞}. Then {∞} is a grand orbit finite
fixed point for f , so that by previous results it must be a superattracting
fixed point. In fact, since it has d pre-images counted with multiplicity, ∞
must be a critical point with multiplicity d− 1.

If

f(z) =
p(z)

q(z)
=
amz

m + . . .+ a0
bnzn + . . .+ b0

is a ratio of polynomials with no common factors and am, bn ̸= 0, Then
each root of q(z) must be mapped by f to infinity. Since no point in C can
be mapped to ∞, it follows that q is a constant polynomial, and f is a a
polynomial.

If 0 and ∞ are both grand orbit finite points for f , they must be the
only ones from previous results. Hence f−1({0,∞}) ⊆ {0,∞}. We divide
into cases. If f(0) = f(∞) = 0, this means no point in C maps to infinity.
As f(∞) = 0, f is a bounded holomorphic map on C, hence constant, a
contradiction. An analogous contradiction arises when f(0) = f(∞) = ∞
by conjugating the map with 1/z.

Hence either 0 and∞ are fixed points or form a periodic orbit of period 2.
If they are fixed points, we have seen that f is a polynomial, and as 0 must be
a critical point of multiplicity d− 1, we have f(z) = αzd. On the other case,
by composing f with 1/z, we obtain that f(1/z) = αzd, so f(z) = αz−d.

If f is a rational map with grand orbit finite points, then there must be
either one or two of them. Since the action of G(Ĉ) is triply transitive, we
may conjugate f b some map taking these points either to ∞ or to {0,∞},
and apply the previous results. Conjugation from αz−d to z−d comes from
conjugating the map by λz, where λ is a (d+ 1)-th root of α−1.

Problem (4-c. Fixed point at infinity). If f is a rational function with
a fixed point at infinity, show that the multiplier λ at infinity is equal to
limz→∞ 1/f ′(z). In particular, this fixed point is superattracting if and only
if f ′(z)→∞ as z →∞.
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Proof. Consider the uniformization z 7→ 1/z around infinity, where we locally
have the map

1

f(1
z
)

around 0. If f is a rational map

f(z) =
p(z)

q(z)
=
amz

m + . . .+ a0
bnzn + . . .+ b0

,

then
1

f(1
z
)
=

bn(1/z
n) + . . .+ b0

am(1/zm) + . . .+ a0
= zm−n bn + . . .+ b0z

n

am + . . .+ a0zm
,

so that if ∞ is a fixed point, since am, bn ̸= 0, we have m − n ≥ 1. Taking
the derivative at z = 0, we obtain that the multiplier at infinity is bn/am, if
m− n = 1, and 0, if m− n ≥ 2. Now, the derivative of f(z) is

f ′(z) =
p′(z)q(z)− p(z)q′(z)

q(z)2

=
(mamz

m−1 + . . .+ a1) (bnz
n + . . . b0)− (amz

m + . . .+ a0)(nbnz
n−1 + . . .+ b1)

(bnzn + . . .+ b0)2

=
(m− n)ambnzm+n−1 + . . .+ a1b0 − a0b1

b2nz
2n + . . .+ b20

=
1/zm+n−1

1/z2n
(m− n)ambn + . . .+ (a1b0 − a0b1) 1

zm+n−1

b2n + . . .+ b20
1
z2n

= z1−(m−n) (m− n)ambn + . . .+ (a1b0 − a0b1) 1
zm+n−1

b2n + . . .+ b20
1
z2n

,

so that the limit of 1/f ′(z) as z → ∞ is either bn/am, if m− n = 1, or 0, if
m− n ≥ 2, coinciding with the previous calculations.

Problem (4-d. Self-similarity). Show that the set of z for which (J, z) is
locally conformally isomorphic to (J, z0) is everywhere dense in J unless the
following very exceptional condition is satisfied: For every backwards orbit
· · · 7→ z2 7→ z1 7→ z0 under f which terminates at z0, some zj with j > 0
must be a critical point of f . As an example, for the map f(z) = z2 − 2,
show that this condition is satisfied for the endpoints z0 = ±2. Similarly,
show that it is satisfied for the point z0 = 0.8i of the map

g(z) = z3 +
12

25
z +

116

125
i.

For any f , show that there can be only finitely many such exceptional points
z0.
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Proof. Suppose that there exists some open set U such that for all z ∈ U ∩J ,
(z, J) is not locally conformally isomorphic to (z0, J). As iterated preimages
of z0 are dense in J , there will exist z′ ∈ U ∩ J such that fn(z′) = z, for
some n. Hence the failure of fn : N → N0 being a conformal isomorphism
for some neighborhoods N and N0 happens only if fn is a critical point for
f , so that some fk(z′) for 0 ≤ k < n is a critical point of f . Hence the this
backwards orbit of z0 has a critical point.

Suppose now w ∈ J is such that fm(w) = z0. Iterated preimages of w
are dense, so some preimage of w is contained in U . For local conformality
to fail, we must similarly have that either fk(w) is a critical point for some
0 ≤ k < m, or this preimage of w is a critical point.

For the purposes of notation, let

Sz0 = {z ∈ C : ∃n ∈ N such that fn(z) = z0}

be the set of all points in all backwards orbits of z0, Ωf be the set of critical
points of f , Ω = Ω ∩ Sz0 and P =

⋃
n≥1 f

n(Ω) the postcritical set of Ω.
Suppose that there exists infinitely many points w ∈ Sz0 such that w is

not a critical point nor maps to a critical point before mapping to z0. This
will imply that some preimage of w is a critical point. We take a sequence
(wj) of pairwise distinct such points. As Ω is finite, by taking a subsequence
we may assume that there exists a single p′ ∈ Ω such that fnj(p) = wj, where
nj ≥ 1 is minimal. We must also have that the nj are distinct, so nj → ∞.
This implies that the postcritical set Pp′ is contained in Sz0 ; for if f

k(p′) = u,
we have some nj > k, so

fnj−k(u) = fnj−k(fk(p′)) = fnj(p′) = wj ∈ Sz0 ,

so u ∈ Sz0 . Moreover, the postcritical set of z0 is also in Sz0 , hence z0 must
be a periodic point for f . Then for all p ∈ Ω, p is preperiodic, so P is finite.
However, the set of w ∈ Sz0 such that w is not a critical point nor a preimage
of a critical point before mapping to z0 is contained in P , so we obtain a
contradiction.

Therefore this set is finite. If there were an infinite backwards orbit
· · · 7→ z2 7→ z1 7→ z0 that does not contain a critical point, then there can be
only finitely many distinct point in this backeards orbit. Immediately this
implies that some point in it is periodic, hence z0 is periodic, and all q ∈ Ω
are preperiodic. Furthermore, let w be a point in this backwards orbit that
repeats infinitely often, where it is then periodic. Let m be the (minimal)
period if p, and suppose some zj = w for some j > m. Then, for j′ < j, we
have that zj′ = w if and only if j′ ≡ j mod m, by minimality of the period.
Hence, for j′ > j, if j′ ̸≡ j mod m, then we must have that zj′ ̸= w. In
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other words, w can appear in this sequence only “aligning” its period with
j.

But as w appears infinitely often in the backwards orbit, it will appear
for arbitrarily big j′ ≡ j mod m. And when it appears, for all j′′ < j′, such
that j′′ ≡ j mod m, we will have that zj′′ = w. All in all, this implies that
for all k ∈ N, zj+km = w, and therefore this backwards orbit is periodic.
Moreover, as w must map to z0 under some iterate, z0 will appear in this
backwards orbit, and it will in fact correspond to the periodic orbit of z0.

In summary, there can be at most one infinite backwards orbit of z0 that
contains no critical points. If it exists, z0 is periodic, this backwards orbit
will correspond to the periodic orbit of z0, and all p ∈ Ω are preperiodic. All
other preimages of z0 will eventually have a critical point in its backwards
orbit. In this case, the density of points locally conformally equivalent to
(z0, J) evidently fails.

Let p ∈ Ω be such that it is the first critical point to appear in some
backwards orbit of z0, that is, if n is the minimal n such that fn(p), then
f i(p) is not critical for 0 < i < n.

If z0 is not periodic, then from the previous finiteness results, and the
fact that any point has at most deg f preimages, there will exist some iterate
g = f l of f such that all preimages of z0 are critical points for g. In order
for density of points locally conformally equivalent to (z0, J) to fail, we must
have that either z0 maps to a critical point, or that its forward orbit is not
dense in J .

If A = O+(z0), then A is a forward invariant closed subset of J . Must A
be finite?

Consider f(z) = z2 − 2, where 0 is the unique critical point, f(0) = −2,
f(−2) = f(2) = 2. Therefore f−1(2) = {−2, 2} and f−1(−2) = {0}, so that
for any (infinite) backwards orbit of z0 = −2, z1 is 0, a critical point, but
for z0 = 2, we have the infinite backwards orbit zj = 2 for all j, where no
point is critical. As 2 is a fixed point for f , we cannot have any other (z, J)
be locally conformally isomorphic to (2, J), for either we have an iterate of
2 mapping to z, so z = 2, or an iterate of z mapping to 2, so either z = 2 or
z passes through a critical point to map to 2.

For g(z), note that g′(z) = 3z2 + 12/25, so the critical points are ±2
5
i. If

z0 = 4i/5, we have that

g

(
2

5
i

)
=

132

125
i, g

(
−2

5
i

)
=

4

5
i.
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Since we want to solve g(z) = 4i/5, we obtain

g(z)− 4

5
i =

(
z +

2

5
i

)(
z2 − 2

5
iz +

8

25

)
,

so that the two other preimages of z0 are 4
5
i and −2

5
i. In fact, the critical

point −2
5
i maps to z0 with multiplicity 2, and z0 is also a fixed point. The

same analysis as above applies to z0 for some (z, J) to be locally conformally
isomorphic to (z0, J).

We show there can be at most finitely many points for which density of
(z, J) locally conformally equivalent to (z0, J) fails. We have to understand
the case where z0 is possibly not preperiodic, but every preimage of z0 is
critical; why is that a problem? (incomplete: may revisit question later. It
is more complicated than anticipated.)

Problem (4-e. A Cantor Julia set.). If f(z) = z2 − 6, show that J(f) is
a Cantor set contained in the intervals [−3,−

√
3] ∪ [

√
3, 3]. More precisely,

show that a point in J(f) with orbit z0 7→ z1 7→ · · · is uniquely determined
by the sequence of signs ϵj = zj/|zj| = ±1. In fact

z0 = ϵ0

√
6 + ϵ1

√
6 + ϵ2

√
6 + · · ·.

Show that every orbit outside of this Cantor set must escape to infinity.

Proof. Note that f(3) = f(−3) = 3, and f(−
√
3) = f(

√
3) = −3. Re-

stricting ourselves to the real axis R for the moment, we see that f maps
the interval [−3,−

√
3] to [−3, 3] monotonically and likewise maps [

√
3, 3] to

[−3, 3] monotonically. On these these two intervals, the derivative of f is
|f ′(z)| > 1. Classical arguments in real unimodal dynamicals system show
us that the set of all points x ∈ R that do not escape [−3, 3] under iteration
forms a Cantor set, contained in [−3,−

√
3] ∪ [

√
3, 3], where each point is

determined uniquely by an itinerary through these two intervals, where an
explicit expression is as above. The dynamical system on this Cantor set is
topologically conjugate to the shift map on Σ2 = {0, 1}N, and points outside
of it diverge to infinity.

Periodic points are dense in this cantor set Λ, and since the derivative
of f is strictly greater than 1 on Λ, all of them are repelling. Therefore
they belong to the Julia set, and the closure belongs to J(f), so Λ ⊆ J(f).
Another argument, more in line in the book, is that the two branches of
f−1, ±

√
z + 6, are strictly contracting on [−3, 3] and carry the interval to

[−3,−
√
3] or to [

√
3, 3].
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We see that Λ is a compact fully invariant subset of J(f). For z ∈ Λ, we
see that its set of preimages is contained in Λ and dense in J(f), hence Λ
is dense in J(f). (This argument shows that if S ⊆ J(f) and f−1(S) ⊆ S,
then S = J(f).

Moreover, we see that ∞ is a superattracting fixed point for f , as it
is a polynomial. Hence the basin of attraction of ∞ is contained in F (f),
and contains the exterior of some disk DR. Suppose U is a Fatou component
disjoint fromA(∞), so in particular U ⊂ DR. We know that ∂U ⊆ J(f) = ∆.
We know that Imz attains a maximum and minimum on the boundary of U ,
but since all points the Julia set have imaginary part 0, we see that Imz = 0
for all z ∈ U . This is a contradiction with U open, hence U = ∅, and
F (f) = A(∞).

(General question: can a bounded open set U in R2 have its boundary be
contained in a cantor set Λ?)

Problem (4-h. Liapunov Stability). A point z0 ∈ Ĉ is stable in the sense of
Liapunov for a rational map f if the orbit of any point which is sufficiently
close to z0 remains uniformly close to the orbit of z0 for all time. More
precisely, for every ε > 0, there should exist a δ > 0 so that if z has spherical
distance σ(z, z0) < δ then σ(fn(z), fn(z0)) < ε for all n. Show that a point
is Liapunov stable if and only if it belongs to the Fatou set.

Proof. We recall Arzela-Ascoli’s theorem:

Theorem 4.4. For a family of continuous functions F : Ω ⊆ C→ Y , where
Y is a complete metric space, F is normal if and only if:

• F is uniformly equicontinuous on compact subsets K ⊆ Ω;

• for each z ∈ Ω, F(z) = {f(z) : f ∈ F} is precompact in Y .

A small comment is that normality of holomorphic maps between hyper-
bolic Riemann surfaces comes from Arzela-Ascoli and Pick’s theorem, where
the second condition above decides if the family is locally uniformly divergent
or not.

Suppose that z0 is in the Fatou set, so that for some connected neighbor-
hood U if z0, {fn|U} is a normal family. For Y = Ĉ with the spherical metric
(being compact so we do not have the issue of locally uniform divergence to
infinity), equicontinuity of {fn|U} on compact subsets of U implies that, for
Bδ′(z0) ⊂ U compact, for all ε > 0 there is a δ′′ > 0 such that for all n ∈ N
and z, z′ ∈ Bδ′(z0), if σ(z, z

′) < δ′′ (in the spherical metric restricted to U ,
given that they are equivalent), then

σ(fn(z), fn(z′)) < ε.
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In particular, σ(fn(z), fn(z0)) < ε, so we need only take δ = min{δ′, δ′′}.
Hence z0 is Liapunov stable.

Conversely, if z0 is Liapunov stable, then

Sε =
∞⋂
n=0

f−n(Bε(f
n(z0)))

contains z0 in its interior, for all ε > 0. To prove normality of {fn|U}
on some neighborhood of z0, we need only find a neighborhood of z0 on
which {fn|U} is uniformly equicontinuous. For some compact neighborhood
Bδ′ = Bδ′(z0) ⊂ U , and for ε > 0, Let N = Sε/2 ∩ Bδ′ . Then, for all n and
z, z′ ∈ N , we have that

σ(fn(z), fn(z′)) ≤ σ(fn(z), fn(z0) + σ(fn(z0), f
n(z′)) < ε.

Hence {fn} is uniformly equicontinuous on N .

Problem (4-i. Fatou components). If Ω is a connected component of the
Fatou set of f , show that f(Ω) is also a connected component of F (f).

Proof. Naturally f(Ω) is open, connected and contained in the fatou set F (f),
hence contained in a single Fatou component Ω′. Note that ∂Ω ⊆ J(f),
so f(∂Ω) ⊂ J(f) and f(∂Ω) is disjoint from Ω′. More precisely, as f is
continuous, f(Ω) ⊆ f(Ω), hence

f(∂Ω) ⊆ f(Ω) = f(Ω) ∪ ∂f(Ω).

As f(Ω) is in the Fatou set, we must have that f(∂Ω) ⊆ ∂f(Ω), and since
f(Ω) ⊆ Ω′, we also have f(∂Ω) ⊆ ∂Ω′.

We show f |Ω : Ω → Ω′ is a proper map. If K ⊆ Ω′ is compact, then
let (xn)n be a sequence in (f |Ω)−1(K). Then a subsequence (xnk

) is such
that f(xnk

)→ y ∈ K. If (xnk
) has no convergent subsequence, then it must

escape every compact set of Ω. As Ω is compact (here we are assuming that
f : S → S, where S is compact), (xnk

) has a subsequence xnkl
→ x ∈ ∂Ω.

But then f(x) = y ∈ f(∂Ω) ⊆ ∂Ω′, a contradiction. Hence f−1(K) is
compact, and f |Ω : Ω→ Ω′ is a proper map.

As Ω′ is locally compact and Hausdorff, f |Ω is a closed map, so f |Ω(Ω) ⊆
Ω′ is open and closed. But then f(Ω) = Ω′, as we wanted to show. We also
proved that a map between two Fatou components, when S is compact, is
always proper.

The hypothesis that S be compact above is necessary, as we may consider
the map z 7→ λz on D, when |λ| < 1, or z 7→ z + i in H.
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5 Dynamics on Hyperbolic Surfaces

Problem (5-b. Accumulation points of a path). In any Hausdorff space X,
show that the closure of a connected set is connected, and show that the
intersection of any nested sequence K1 ⊃ K2 ⊃ · · · of compact connected
sets is again connected. Now consider an infinite path p : [0,∞) → X in a
compact Hausdorff space. Show that the set of all accumulation points of
p(t) ast t→∞ can be identified with the intersection of closures⋂

t

p[t,∞),

and therefore is a non-vacuous compact connected set.

Proof. We will prove the stronger fact: If C ⊆ X is connected and C ⊆ D ⊆
C, then D is connected. Suppose D ⊆ U ∪ V , where U and V are disjoint
and open in X. Then C ⊆ U ∪ V , and as C is connected, without loss of
generality C ⊆ U and C ∩ V = ∅, so V ⊆ X \ C.

As U and V are also closed in X, and

C =
⋂
C⊆F

F

is the intersection of all closed subsets containing C, we have that D ⊆ D ⊆
U , and therefore D ∩ V = ∅. This concludes that D is connected.

Any closed subset of a compact set is compact, and in a Hausdorff space,
compact sets are always closed. Hence the intersection

⋂
Ki is compact and

non-empty; if it were empty, K1 \
⋂
i≥nKi is an open cover of K1, hence has

a finite subcover, which would imply that some Ki = ∅, which we exclude as
an assumption.

We show it is connected. If K =
⋂
Ki ⊆ U ∪ V where U and V are open

and disjoint, we claim there is some Ki such that Ki ⊆ U ∪ V . If that were
not the case, denoting W = U ∪ V as an open set, we have that for all i,
Ki \W is a nonempty compact set. But the

⋂
i

(Ki \W ) =

(⋂
i

Ki

)
\W = K \W

is nonempty, a contradiction. Hence for some Ki, Ki ⊆ U ∪ V . As Ki is
connected, without loss of generality Ki ⊆ U and Ki∩V = ∅, so that K ⊆ U
and K ∩ V = ∅, and K is connected.

An observation in the above proof is that we do not in fact need all of
the Ki to be connected, but only infinitely many.
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For a path p : [0,∞) → X on X compact Hausdorff, we know that
[t,∞) is connected for all t, and therefore also p[t,∞). We see that p[t,∞)
is connected and compact, as a closed subset of a compact space, Hence the
intersection

K =
⋂
t

p[t,∞)

is compact, connected and nonempty. If x ∈ K, then by definition, for all n,
there is some sequence (tnj )j such that tnj ≥ n and p(tnj ) → x. By taking a
diagonal subsequence, we see that p(tnn) → x, and tnn → ∞, so that x is an
accumulation point of the path as t→∞.

Conversely, if there is some sequence (tj)j such that tj →∞ and p(tj)→
x, Then for all t, we may take a subsequence so that all the terms satisfy
tj ≥ t, so x ∈ p[t,∞). As this is true for all t, we have x ∈ K.

6 Dynamics on Euclidean Surfaces

Problem (6-a. The derivative of a torus map). Consider the torus T = C/Λ,
where we may assume that Λ = Z ⊕ τZ with τ /∈ R. Given α ∈ C, show
that there exists a holomorphic map f(z) ≡ αz + c from T to itself if and
only if αΛ ⊂ Λ, or in other words if and only if both α and ατ belong to
Λ. Show that an arbitrary integer α ∈ Z will satisfy this condition. On the
other hand, show that there exists such a map with derivative α /∈ Z if and
only if α satisfies a quadratic equation of the form

α2 + pα + d = 0,

where d = |α|2 is the degree, and where p is an integer with p2 < 4d. For a
map of degree d = |α|2 = 1 show that α must be an m-th root of unity with
m = 1, 2, 3, 4, or 6. If m ̸= 1, conclude that fm must be the identity map.
Show that the cases m = 3, 4, 6 occur for suitably chosen lattices, and that
the case m = 1, 2 occur for an arbitrary lattice. In the special case α = 1,
show that the closure of every orbit under f is either a finite set, a finite
union of parallel circles, or the full torus T.

Proof. Note that in order to be well defined, we need to have that f(z+ω) ∼
f(z), for all ω ∈ Λ; therefore αz + αω + c ∼ αz + c, and so αω ∈ Λ, which
implies αΛ ⊆ Λ. Naturally for α ∈ Z, we have that αω ∈ Λ, due to the
abelian group structure of Λ.
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Now, αΛ ⊆ Λ if and only if{
α1 = m+ nτ,

ατ = p+ qτ,

for m,n, p, q ∈ Z. Moreover, n = 0 ⇐⇒ α ∈ Z. So if α /∈ Z, then
τ = (α−m)/n, and therefore

α
α−m
n

= p+ q
α−m
n

=⇒ α2 −mα = np+ qα− qm
=⇒ α2 − (m+ q)α + qm− np = 0

=⇒ α2 − (trM)α + detM = 0,

where M is the matrix of the linear transformation with respect to the basis
{1, τ} that multiplication by α induces on the lattice Λ. Note that detM
and trM do not depend on the basis we choose to represent multiplication
by α, and detM is the degree of f , hence detM = |α|2. Note then that

α =
trM ±

√
(trM)2 − 4 detM

2
,

and α ∈ R, we would have that n = 0, so α ∈ Z, which is not what we
assumed. Hence, for α to be non-real, we need that (trM)2 < 4 detM .

If |α|2 = 1, so that detM = 1, we have that M ∈ SL2(Z) when computed
with respect to the basis {1, τ} of Λ, so that multiplication by α on Λ has
an invers, where it must be multiplication by α−1.

If |α|2 = 1, consider the case α ∈ Z, so that α = ±1. Naturally then α
is either 1 a 2-nd root of unity, and every lattice admits the maps f(z) = z
and f(z) = −z.

Assume now |α2| = 1 with α /∈ Z. As (trM)2 < 4 detM = 4, we have
trM ∈ {0,±1}, since it must be an integer. For trM = 0, we see that α
satisfies α2 + 1 = 0, Hence α = ±i. For trM = −1, α satisfies

α2 + α + 1 = 0 =⇒ α3 = 1,

where α is then a 3-rd root of unity, and for trM = 1, we have

α2 − α + 1 = 0 =⇒ α3 + 1 = 0 =⇒ α6 = 1,

where it is easily seen that α must be a primite 6-th root of unity.
For α = ±i, we may assume α = i, by possibly composing multiplication

by α with z 7→ −z. Hence multiplication by α is a π/2 rotation of Λ, and
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i ∈ Λ. This is realizable by a square lattice, generated by {1, i}. For α the
6-th root of unity, this is realizable by an hexagonal lattice, generated by
{1, α}.

Now if f(z) = z + c for c = a+ bτ , If a, b ∈ Q, then for some N ∈ N, we
have that fN(z) = z+Nc = z+Na+Nbτ where Na,Nb ∈ Z, so that fN is
the identity. Hence every orbit is periodic for f , and consists of a finite set.

Assume b /∈ Q but a ∈ Q. Then for some iterate fN(z) = z + Nc =
z + Nbτ , and by the irrationality of b, the orbit of fN will be dense on the
“side” corresponding to τ . We have a finite set of circles corresponding to
the translates of this side by the multiples of a. The analogous situation
happens when a /∈ Q but b ∈ Q.

Now if both a, b /∈ Q, we will have density of the orbit on T. (How to
prove? Argument by pigeonhole principle, likely.)

An observation is that, if α ̸= 1, the map f(z) = αz + c is conjugate to
the map g(z) = αz. For the choices of α /∈ Z and |α|2 = 1, can we prove
that the lattices must necessarily be the square and hexagonal ones?

Problem (6-c. Grand orbit finite points). Show that a nonlinear holomor-
phic map f : C → C has at most one grand orbit finite point. Show by
examples such as f(z) = λzez and f(z) = z2ez that this fixed point need not
be attracting, and in fact can have arbitrary multiplier.

Proof. We apply the strong Picard Theorem: if f : C → C is not a polyno-
mial, having an essential singularity at infinity, for any neighborhood C \DR

of infinity, the image f(C \ DR) omits at most one point of C.
The case for f a polynomial is already contemplated on f : Ĉ → Ĉ.

Suppose there were at least two grand orbit finite points, and let S be the
finite set of their grand orbits. Then |S| > 1 and S is contained in some
ball DR. But by the strong Picard theorem, S has a preimage outside of it,
contradicting that it is invariant under f .

For f(z) = λzez, we see that for λ ̸= 0, f(z) = 0 ⇐⇒ z = 0, so 0 is
grand orbit finite. Moreover, f ′(z) = λ(z+1)ez, so f ′(0) = λ, where λ ∈ C∗.
So its multiplier is arbitrarily nonzero. For f(z) = z2ez, it is easy to see that
0 is the unique point with finite grand orbit, and it is a critical point for
f .

7 Smooth Julia Sets

Problem (7-b). For any a ∈ D the map

ϕa(z) =
z − a
1− az
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carries the unit disk isomorphically onto itself. A finite product of the form

f(z) = eiθϕa1(z) . . . ϕan(z)

with aj ∈ D is called a Blascke product of degree n. Show that every such f is

a rational map which carries D onto D and Ĉ\D onto Ĉ\D. Conclude that the
Julia set J(f) is contained in the unit circle. If g(z) = 1/f(z), interchanging
the interior and exterior of the unit circle, show that J(g) is also contained
in the unit circle. If n ≥ 2, and if one of the factors is φ0(z) = z show that
f has attracting fixed points at zero and infinity, and show that J(f) is the
entire unit circle.

Proof. It is standard to see that ϕa is a rational map of degree 1, hence an
automorphism of Ĉ, and∣∣∣∣ z − a1− az

∣∣∣∣2 − 1 =
−1

|1− az|2
(1− |z|2)(1− |a|2),

so that |ϕa(z)| < 1 ⇐⇒ |z| < 1, |ϕa(z)| > 1 ⇐⇒ |z| > 1 and ϕa preserves
the unit circle.

This is sufficient to show that f is a rational map, and maps D to D, S1

to S1, and Ĉ \ D to Ĉ \ D. Note that ϕa ◦ ϕ−a = Id. If f is non-constant,
as it is a rational map, it must be surjective, so f maps D onto iteself, and
analogously for S1 and Ĉ \ D.

As D and Ĉ\D ∼= D are hyperbolic Riemann surfaces, families of holomor-
phic endomorphisms on them are always normal, hence D∪ (Ĉ \D) ⊆ F (f),
and therefore J(f) ⊆ S1. The same reasoning applies to g = 1/f , since D
maps onto Ĉ \ D and Ĉ \ D maps onto D. If n ≥ 2 and ϕ0(z) is one of the
factors, Then we see that 0 is a fixed point for f . Moreover, f(z) = zh(z)
where h are the other factors, so

f ′(z) = h(z) + zh′(z) =⇒ f ′(0) = h(0),

and we know that |f ′(0)| = |h(0)| < 1. Hence 0 is an atracting fixed point
for 0. By a change of coordinates, it also easy to see that ∞ must be an
attracting fixed point for f . By connectedness of components and the fact
that boundaries of attracting basins are in the Julia set, we have that D ⊆
A(0) and Ĉ \ D ⊆ A(∞). By the jump discontinuity at S1, we must have
that S1 ⊆ J(f), hence all inclusions are equalities.

Problem (7-c. Chebyshev Polynomials). Define monic polynomials

P1(z) = z, P2(z) = z2 − 2, P3(z) = z3 − 3z, . . .
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inductively by the formula Pn+1(z) + Pn−1(z) = zPn(z). Show that Pn(w +
w−1) = wn + w−n, or equivalently Pn(2 cos θ) = 2 cos(nθ), and show that
Pm ◦ Pn = Pmn. For n ≥ 2 show that the Julia set of ±Pn is the interval
[−2, 2]. For n ≥ 3 show that Pn has n − 1 distinct crtical points but only
two critical values, namely ±2.

Proof. Suppose by induction that Pk(w + w−1) = wk + w−k for 1 ≤ k ≤ n,
which is evidently true for k = 1 and true for k = 2, as

(w + w−1)2 − 2 = w2 + 2ww−1 + w−2 − 2 = w2 + w−2.

Then

Pn+1(w + w−1) = (w + w−1)Pn(w + w−1)− Pn−1(w + w−1)

= (w + w−1)(wn + w−n)− wn−1 − w−(n−1)

= wn+1 + wn−1 + w−n+1 + w−n−1 − wn−1 − w1−n

= wn+1 + w−(n+1),

which completes the induction step. Moreover, as 2 cos θ = eiθ + e−iθ, we
have the second equivalence.

Note that

Pm(Pn(w+w
−1)) = Pm(w

n+w−n) = (wn)m+(w−n)m = wmn+w−mn = Pmn(w+w
−1),

And as this equality holds for infinitely many values of w + w−1, we have
that the polynomials Pm ◦ Pn and Pmn are equal.

For n ≥ 2, consider the map f(z) = zn on Ĉ, and h(w) = w + w−1. We
then have that Pn ◦ h = h ◦ f , where then we have a holomorphic semicon-
jugacy:

Ĉ f
//

h
��

Ĉ

h
��

Ĉ Pn // Ĉ
We have previously seen that h maps the exterior of the unit disk isomorphi-
cally onto Ĉ \ [−2, 2]. The dynamics are conjugate on these sets, so that for
a point outside [−2, 2] it will diverge to infinity. Hence J(Pn) ⊆ [−2, 2]. For
another approach, one sees that [−2, 2] is fully invariant under Pn, containing
the repelling fixed point 2 = 2 cos 0, so that J(Pn) ⊆ [−2, 2].

Now we must have that ∂A(∞) ⊆ J(Pn) ⊆ [−2, 2]. If U were another
Fatou component of Pn, it would have to be bounded and ∂ ⊆ [−2, 2]. But
ImPn(z) must attain a maximum at the boundary of U , so it is constantly
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equal to zero, giving a contradiction. Hence there are no other Fatou com-
ponents, and A(∞) = Ĉ \ [−2, 2], and J(Pn) = [−2, 2].

We also see that, since Pn(2 cos θ) = 2 cos(nθ), by taking the derivative,

−2 sin θP ′
n(2 cos θ) = −2n sin(nθ)

=⇒ P ′
n(2 cos θ) = n

sin(nθ)

sin θ
,

which is zero when sin(nθ) = 0 but sin θ ̸= 0, so θ = πk/n for k ∈ Z \ nZ.
These yield n−1 distinct values of 2 cos θ, corresponding to the n−1 roots of
the polynomial P ′

n. In all of the cases, cos(nθ) = ±1, yielding the the critical
values ±2.

Problem (7-d. More interval Julia sets). Now suppose that f is a Blaschke
product with real coefficients, and with an attracting fixed point at the origin.
Show that there is one and only one rational map F of the same degree so
that the following diagram is commutiative:

Ĉ f
//

z+1/z
��

Ĉ
z+1/z
��

Ĉ F // Ĉ

and show that J(F ) = [−2, 2]. In the special case f(z) = zn, show that this
construction yields the Chebyshev polynomials.

Proof. Recall that the map h(z) = z + 1/z maps the unit circle two to one
onto the interval [−2, 2], and is a conformal isomorphism from D (and from
Ĉ \ D) onto Ĉ \ [−2, 2].

In order for F to satisfy F (h(z)) = h(f(z)), for z ∈ D, we must have that

F (w) = h(f(z)),

where z is either of the two preimages of w ∈ Ĉ. There are exactly two
solutions of w = z+z−1, one being the inverse of the other, so as a necessary
condition we must have that h(f(z)) = h(f(z−1)) for all z. This happens
when either f(z) = f(z−1) or f(z)−1 = f(z−1); as f is a Blaschke product,
it maps D onto D and Ĉ \ D onto Ĉ \ D, hence we must have that f(z)−1 =
f(z−1).

Note that when a ∈ R ∩ D, we have that

ϕa(z
−1) =

1/z − a
1− a/z

=
1− az
z − a

= ϕa(z)
−1,
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so that indeed f will satisfy the latter necessary condition f(z−1) = f(z)−1.
Treating h : Ĉ→ Ĉ as a quotient map, we see that h ◦ f passes continu-

ously to the quotient as F , and on Ĉ \ [−2, 2], it is defined holomorphically
as F (w) = f(h(z)), where z is the solution in D, say. Note that h has critical
points only at ±1, so outside of them, by taking neighborhoods on which h is
invertible, F is defined holomorphically. By Riemann’s removable singularity
theorem, F extends holomorphically to ±1.

As an endomorphism of the Riemann sphere, F is a rational function, and
has been uniquely described by the necessary conditions imposed. It must
have degree equal to the degree of f , as, since the dynamics are conjugate
from D to Ĉ \ [−2, 2] and a generic point on D has number of preimages by
f equal to the degree, the same will happen for F . It is also easy to see that
for f(z) = zn, the situation thus described is the same as in the previous
problem.

Finally, by the same previous arguments, we may conclude that J(F ) =
[−2, 2], since J(f) = S1 and all point in Ĉ \ D converge to infinity.

Problem (7-g. The family of degree four Lattès maps). For the torus T =
C/(Z+ τZ), show that the involution z 7→ z+1/2 of T corresponds under ℘
to an involution of the form w 7→ a/w of Ĉ, with fixed points at w = ±

√
a.

Show that the rational map f = fa has poles at ∞, 0, 1, a and double zeros
at ±

√
a. Show that f has a fixed point of multiplier λ = 4 at infinity, and

conclude that

f(w) =
(w2 − a)2

4w(w − 1)(w − a)
.

As an example, if a = −1 then

f(w) =
(w2 + 1)2

4w(w2 − 1)
.

Show that the correspondence τ 7→ a = a(τ) ∈ C \ {0, 1} satisfies the equa-
tions

a(τ + 1) = 1/a(τ), a(−1/τ) = 1− a(τ), a(−τ) = a(τ).

Conclude, for example, that a(i) = 1/2, and that a(1+i
2
) = −1.

Proof. We see that the involution z 7→ z+1/2 commutes with multiplication
by −1, as

(−z) + 1/2 ∼ −z − 1/2 = −(z + 1/2),

hence it descends to a continuous map g : Ĉ → Ĉ such that g(℘(z)) =
℘(z + 1/2). It has to be holomorphic where away from the critical values of
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℘, and since they are isolated, by Riemann’s removable singularity theorem
it extends (uniquely) to a rational map on Ĉ. Moreover, its degree must be
1, given that the degree of the involution also is 1.

We see in fact that

g(g(℘(z)) = g(℘(z + 1/2)) = ℘(z + 1) = ℘(z),

so that g ◦ g = Id on Ĉ. Since

(1/2 + τ/2) + 1/2 ∼ τ/2

We see that the four points

1

4
,

3

4
,

1

4
+

1

2
τ and

3

4
+

1

2
τ

on the torus are the solutions to z+1/2 ∼ −z, so that they map to two fixed
points of g on Ĉ. Recall that by our construction of ℘ = ℘τ , we have

℘(0) =∞, ℘

(
1

2

)
= 0, ℘

(τ
2

)
= 1, ℘

(
1 + τ

2

)
= a,

so that f(℘(z)) = ℘(2z). Hence

g(0) =∞, g(∞) = 0, g(1) = a, g(a) = 1.

By considering the map h(w) = 1/g(w) which fixes infinity and 0, hence
h(w) = bw for some b, we have that b = 1/a. In conclusion,

g(w) =
a

w
.

This has fixed points at ±
√
a, the images of the four points on the torus

previously mentioned.
Note that the doubling map on T satisfies

2 · 0 = 2 · 1
2
= 2 · τ

2
= 2 · 1 + τ

2
= 0,

and pushing this down to f = fa, we have

f(∞) = f(0) = f(1) = f(a) =∞.

These must all be non-critical points of f . Note also that

2 · 1
4
= 2 · 3

4
=

1

2
, 2 ·

(
1

4
+
τ

2

)
= 2 ·

(
3

4
+
τ

2

)
=

1

2
,
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and pushing this down by ℘ to f we have only two distinct preimages of
℘(1/2) = 0. Hence ±

√
a are two simple critical points, being double zeroes

of f .
Note that 0 is a fixed point of the doubling map on T, pushing down

to S = Ĉ to the fixed point at ∞. Moreover, given that the multiplier of
0 for z 7→ 2z is 2, and a uniformizing neighborhood of 0 in the quotient
S = T/(z ∼ −z) is z2, the multiplier of 0 on S becomes 4, and this is the
multiplier of ∞ for f .

Therefore the map

f(w) =
w(w − 1)(w − a)

(w2 − a)2

has no zeros and no poles, hence it must be constant, so that

f(w) = λ
(w2 − a)2

w(w − 1)(w − a)
.

By calculating f ′(w) and limn→∞ 1/f ′(w) = 4, we have that λ = 1/4, and

fa(w) =
(w2 − a)2

4w(w − 1)(w − a)
.

Now, given the matrix

M =

(
m n
p q

)
∈ SL2(Z),

M acts on the upper half plane H by τ 7→ (mτ + n)/(pτ + q). Note that the
lattice Z +MτZ is equivalent (through rescaling by a complex number) to
the lattice (pτ + q)Z+(mτ +n)Z, which is equal to Z+ τZ. We in fact have

xMτ + y 7→ x(mτ + n) + y(pτ + q)

= (mx+ py)τ + (nx+ qy),

which is represented by the linear transformation(
x y

)(m n
p q

)
,

with respect to the bases {Mτ, 1} and {τ, 1}.
This map Z +MτZ → Z + τZ given by z 7→ (pτ + q)z descends to a

conformal isomorphism

C/(Z +MτZ) h−→ C/(Z+ τZ),
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which preserves the linear structure. Composing this with the map xτ +y 7→
xMτ + y, we in fact obtain the automorphism on C/(Z + τZ) given by the
matrix M ∈ SL2(Z) acting as a linear transformation.

Given ℘τ : C/(Z + τZ) → Ĉ and ℘Mτ : C/(Z +MτZ) → Ĉ, we wish to
compare ℘τ and ℘Mτ ◦ h−1. Both of them will be double branched covers of
Ĉ ramified at 0, 1/2, τ/2 and (1 + τ)/2, hence will be related by a Möbius
transformation. Recall that ℘Mτ is defined by

℘Mτ (0) =∞, ℘Mτ

(
1

2

)
= 0, ℘Mτ

(
Mτ

2

)
= 1, ℘Mτ

(
1 +Mτ

2

)
= a(Mτ).

As the isomorphism h preserves the linear structure of the torii, it must
map 0 to 0 and send

{1/2,Mτ/2, (1 +Mτ)/2} 7→ {1/2, τ/2, (1 + τ)/2},

and from the above discussion, we in fact have that ℘Mτ ◦ h−1 = ℘τ ◦M .
(?) We therefore only need to see how the automorphism M permutes the
ramification points of the torii to compare ℘τ and ℘Mτ .

For Mτ = τ + 1, we have that

{0, 1/2, τ/2, (1 + τ)/2} 7−→ {0, 1/2, (1 + τ)/2, τ/2}
=⇒ {∞, 0, 1, a(τ)} 7−→ {∞, 0, a(τ + 1), 1},

so that a(τ + 1) = 1/a(τ). For Mτ = −1/τ , we have

{0, 1/2, τ/2, (1 + τ)/2} 7−→ {0, τ/2, 1/2, (1 + τ)/2}
=⇒ {∞, 0, 1, a(τ)} 7−→ {∞, 1, 0, a(−1/τ)},

so that a(−1/τ) = 1− a(τ).
For −τ , we have a reflection of the lattice. In handwavy terms, this will

induce a conformal structure on Ĉ for which the identity is an anticonformal
map, so that conjugation will be a conformal isomorphism, and (−τ) = a(τ).
(?)

8 Geometrically Attracting or Repelling Fixed

Points

Comment on the Proof of 8.5:
Recall the following from the book. From Köenigs linearization, if f :

Ĉ → Ĉ is a rational function of degree d ≥ 2 and ẑ is a geometrically
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attracting fixed point with basin of attraction A ⊂ Ĉ, we find a holomorphic
map ϕ : A → C such that ϕ(ẑ) = 0 and

λϕ(z) = ϕ(f(z))

for all z ∈ A, and ϕ′(0) = 1, being a conformal isomorphism of some
neighborhood of ẑ to some disk Dε(0) around 0. If A0 is the immedi-
ate basin of attraction of ẑ, we have a locally defined holomorphic inverse
ψε : Dε → A0 ⊂ Ĉ, such that ψε(0) = ẑ.

The book claims that it is not possible to exetend ψε by analytic con-
tinuation along radial lines to all of C, as that would yield a holomorphic
map ψ : C → A0 ⊂ Ĉ satisfying ϕ(ψ(w)) = w. Then ψ is injective and ϕ is
surjective.

The book claims this is possible only if Ĉ \ ψ(C) consisted of a single
point. We can see this more clearly through the fact that ψ will have to be
a conformal isomorphism, so that ψ(C) is a copy of C as a simply connected
euclidean Riemann surface inside Ĉ.

This yields a contradiction also in the sense that then J(f) ⊆ Ĉ \ ψ(C)
would be finite. The book claims that f |ψ(C) is one-to-one: for w,w ∈ C,

f(ψ(w)) = f(ψ(w′)) =⇒ ϕ(f(ψ(w))) = ϕ(f(ψ(w′)))

=⇒ λϕ(ψ(w)) = λϕ(ψ(w′)) =⇒ w = w′.

That ψ is a left inverse of ϕ, due to being an extension of a locally defined
inverse, is derived from the following:

Lemma 8.1. Suppose g : S → T is a holomorphic function mapping p to q
where p is not a critical point, and h : U → S is a local inverse of f such
that h(q) = p, where U can be taken open and connected.

If V ⊆ T is open, connected and contains U , and H : V → S is a
holomorphic function which extends h, then g ◦H = IdU .

The above is true by the identity principle: g ◦H agrees with g ◦ h = Id
on a smaller open set, and since V is connected, we must have that g ◦H =
Id. In particular, H is univalent, so that H : V → H(V ) is a conformal
isomorphism, and g|H(V ) = H−1 is also a conformal isomorphism.

I believe the same principle will hold true for analyitic continuation of the
local inverse h along curves in T , where, by the identity principle, the germs
h̃ along the analytic continuation will always have to satisfy g ◦ h̃ = Id on
a neighborhood of the germ, whenever the analytic continuation is defined.
(I trust that analytic continuation is well defined for germs of holomorphic
functions with values in another Riemann surface S, not necessarily C.)
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In essence, the book takes a maximal analytic continuation of the local
inverse ψε to a disk Dr, where then ϕ ◦ ψ = Id, ψ : Dr → A0 is univalent,
ϕ|ψ(Dr) : ψ(Dr) ⊂ A0 → Dr is a conformal isomorphism inverse to ψ and f is
one-to-one on ψ(Dr).

Another comment: later in the proof, we want to show that ϕ : U → Dr

is a homeomorphism, and to this end, the book claims it is sufficient to show
ϕ : ∂U → C is injective where naturally ∂U maps to Dr. The fact that
∂U must map to ∂Dr comes from the properness of ϕ|U : U → Dr, being a
conformal isomorphism. If ϕ|∂U is injective, then ϕ|U is an injective map on

a compact set (as it is ultimately contained in Ĉ!), Hence a homeomorphism
onto its image. Since it must be compact and contains Dr, it must contain
Dr. Hence the image is exactly Dr.

Comment on the proof of 8.7:
To be more explicit and concrete about the proof, suppose k = 1 (by

possibly taking the iterate fk). We have Ni ⊆ Ni+1 compactly contained,
and assume N1 has Γ1, . . . ,Γm boundary curves for m ≥ 2. Naturally Ĉ \N1

has exactly m connected components, for if C is a component of Ĉ\N1, then
∂C must intersect ∂N1 =

⊔
i Γi, and in fact be equal to one of the curves Γi.

Moreover, N2 \N1 must have at least m components. This is because we
have the inclusion

N2 \N1 ⊆ Ĉ \N1,

and it is surjective on connected components. That is, for every component
V of Ĉ \N1, there is at least one component U of N2 \N1 such that U ⊆ V .
Notably U must be the component whose boundary is the corresponding
curve Γi, since each Γi is contained in N2.

For each component U of N2 \N1, the map f : U → N1 \N0 is a branched
covering, so that U has at leastm+1 boundary curves,m of which correspond
to the Γ1, . . . ,Γm and at least one which will correspond to ∂N0.

If V is a component of Ĉ \ N1, with ∂V = Γi for some i, we have a
component U of N2 \ N1 contained in V with one of its boundary curves
being the Γi, that is, bounding N1. Also note that this Γi corresponds to
a preimage of the curve ∂N0. Consider its other m bondary curves, more
specifically the preimages of the Γ1, . . . ,Γm; they will corresponds to at least
m distinct components of Ĉ \N2. This concludes the reasoning of the proof.

Problem (8-b. Global linearization). Suppose that f : S → S is a holo-
morphic map from the Riemann surface S to itself. (For example suppose
S = Ĉ, so that f is a rational map.) Show that the linearizing map ϕ maps
the attracting basin A onto C. Show that p0 ∈ A is a critical point of ϕ if
and only if the orbit pn = fn(p0) contains some critical point of f .
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Proof. Recall that ϕ : A → C is the holomorphic map such that

ϕ(f(z)) = λϕ(z),

for all z ∈ A. We know that some disk Dε is contained in the image of
ϕ. As f : S → S is surjective and A is totally invariant, f |A : A → A
is surjective. If mλ : C → C is the multiplication by λ and ϕ|U :→ V is
surjective, then ϕ maps f−1(U) surjectively onto λ−1V by the conjugation.
Explicitly, if w = ϕ(z) ∈ V and z′ is such that f(z′) = z, which always exists,
then ϕ(z) = λϕ(z′), so ϕ(z′) = λ−1ϕ(z).

As the image of ϕ contains a disk Dε, it will contains all disks Dλ−nε, and
hence ϕ is surjective onto C.

If p0 ∈ A, recall that ϕ(p0) is defined as ϕ(fn(p0))/λ
n for any n ∈ N

such that ϕ : U → Dε is defined biholomorphically on a neighborhood of the
geometrically attracting fixed point. The same formula will also hold true
for points in a neighborhood of p0. Hence

ϕ′(p0) = λ−nϕ′(fn(p0))(f
n)′(p0) = λ−nϕ′(fn(p0))

n−1∏
k=0

f ′(fk(p0)).

as ϕ is biholomorphic on a neighborhood of the fixed point, where we may
assume f also does not have critical points, ϕ′(z0) is zero if and only if some
positive iterate of p0 is a critical point for f . If fm(p0) is a critical point, we
may take inthe above n > m such that the expression is still well defined and
have p0 a critical point of ϕ.

Problem (Asymptotic values). In order to extend theorem 8.6 to a non-
compact Riemann surface such as C or C \ {0}, we need some definitions.
Let f : S → S ′ be a holomorphic map between Riemann surfaces. A point
v ∈ S ′ is a critical value if it is the image under f of a critical point, that is a
point at which the first derivative of f vanishes. It is an asymptotic value if
there exists a continuous path p : [0, 1) → S which “diverges to infinity” in
S, or in other words eventually leaves any compact subset of S, but whose
image under f converges to the point v. A connected open set U ⊂ S ′ is
evenly covered if every component of f−1(U) maps homeomorphically onto U ,
and that f is a covering map if every neighborhood of S ′ has a neighborhood
which is evenly covered.

Show that a simply connected open subset of S ′ is evenly covered by f if
and only if it contains no crtical value or asymptotic values. In particular, f is
a covering map if and only if S ′ contains no critical values and no asymptotic
values.
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For a holomorphic self-map f : S → S, show that the immediate basin
of any attracting periodic orbit must contain either a critical values or an
asymptotic value or both, except in the special case of a linear map from C or
Ĉ to itself. As an example, for any c ̸= 0, show that the transcendental map
f(z) = cez from C to itself has no critical points, and just one asymptotic
value, namely z = 0. Conclude that it has at most one periodic attractor.
If |c| < 1/e show that f maps the unit disk into itself, and that f has an
attracting fixed point in this disk.

The map f is proper if the pre-image f−1(K) of every compact setK ⊂ S ′

is a compact subset of S. Show that a proper map has no asymptotic values.

Proof. Let U ⊆ S ′ be non-empty, open and simply connected (in particular
also connected). We know that at any critical point p of f , we may find
holomorphic charts around p and f(p) such that locally f is of the form
z 7→ zn, for some n ≥ 2. This implies that f is not locally one-to-one at
a critical point, so that if U contained a critical value, in the connected
component of its preimage that contains the critical point, f cannot be a
homeomorphism.

Suppose that v ∈ U is an asymptotic value and p : [0, 1) → S is a path
in S that diverges to infinity and

lim
t→1

f(p(t)) = v.

We may further assume that f(p[0, 1)) ⊂ U . Let Û be the component of the
preimage f−1(U) containing the path, as Û is connected. f : Û → U is a
homeomorphism, and in particular proper. If K is a compact neighborhood
of v, then the path p eventually leaves f−1(K), hence the image of the path
could not converge to f . Hence if U is evenly covered, it cannot contain
asymptotic values as well.

Conversely, assume U contains no critical and asymptotic values, and
Û is a connected component of f−1(U). Then f̂ = f |Û is surjective, a local
homeomorphism, and is proper, since U has no asymptotic values. For ifK ⊆
U were compact and f−1(K) not, there exists a sequence (zn)n ⊂ f−1(K)
that has no convergent subsequence, hence leaves every compact set of S,
but limn→∞ f(zn) = v ∈ K.

If we admit the theory of ends, we may take a subsequence of the zn that
converges to an end e of S, and connected the points of the sequence by a
continuous path that lies in smaller and smaller neighborhoods of this end.
This will show that v is an asymptotic value, a contradiction.

A proper local homeomoprhism is a covering map, and since U is simply
connected, this covering map must be a homeomorphism. Hence U is evenly
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covered. The above reasonings are repeated to show that f is a covering map
if and only if S ′ contains no critical values and no asymptotic values.

Now let p be an attracting fixed point of f : S → S. We may assume p is
geometrically attracting but not superattracting. By Koenigs linearization,
we still have the map ϕ : A → C that conjugates f with the multiplication
w 7→ λw, and a locally defined inverse ψε : Dε → A, with maximal extension
ψ : Dr → A (by analytic continuation along radial lines?) such that ϕ ◦ ψ =
Id. (Possibly r =∞.)

Hence ψ is univalent on Dr, being a conformal isomorphism onto its image
ψ(Dr). Then ϕ|ψ(Dr) = ψ−1 is also a conformal isomorphism onto Dr, and f
is one-to-one in ψ(Dr).

If ψ were defined on the whole plane C, then A = C or Ĉ, and the same
holds for S. As f is one-to-one on ψ(C), the only possible case for that is
a linear map on C or Ĉ. In all other situations, ψ must be defined on some
maximal disk Dr with r <∞.

As in the proof of 8.5, if U = ψ(Dr), we have that U is contained in
A (but is not necessarily compact!), because λDr is compactly contained in
Dr, so that f(U) is compactly contained in U . If ∂Dr were to contain no
critical values and no asymptotic values, the proof of 8.5 follows verbatim,
but this time making explicit the fact that ψ(tw0), being a path in S such
that whose limit under ϕ is w0, cannot diverge to infinity, and therefore has
an accumulation point z0 as in the proof. Hence A must contain either a
critical value, or asymptotic value, or both.

Evidently f(z) = cez has no critical points as f ′(z) = cez ̸= 0. If p :
[0, 1)→ C is a path diverging to infinity, for p(t) = x(t) + iy(t), we have

f(p(t)) = cexeiy = cex(t)(cos y(t) + i sin y(t)),

so that if x(t) does not converge to −∞, we must have that x(t) and y(t)
must both converge, otherwise either the argument of the modulus would
change wildly as p → ∞. This shows that the only asymptotic vale can
happen when x(t) → −∞, and the asymptotic value is 0. Therefore f can
have at most one periodic attractor.

If c < 1/e, we have

|f(z)| = |c||ez| = |c|ex < ex−1 < e|z|−1,

so if |z| < 1, we have that |f(z)| < 1, so that f(D) ⊆ D. As f is not
an automorphism of D, by Shchwarz’s lemma f must have an attracting
fixed point in D. This can also be seen by taking any c < c′ < 1/e, where
|f(z)| < e(log c

′)|z|, so that if |z| < 1, then |f(z)| < c′ < 1 uniformly.
For the last question, we have already proved that if f is proper, then it

can have no asymptotic values.
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Problem (The image ψ(C) ⊂ S). If p̂ is a repelling point for the holomorphic
map f : S → S, show that the image of the map ψ : C → S of 8.10 is
everywhere dense, and in fact the complement of S \ ψ(C) consists of grand
orbit finite points.

Proof. Recall that ψ : C→ S is defined such that ψ(0) = p̂ and

C
ψ
��

λ· // C
ψ
��

S
f
// S

and ψ is biholomorphic on a neighborhood of 0.
Using the same reasoning as a previous problem, as λ· is surjective, we

have that f−1(ψ(C)) ⊆ ψ(C). For if z ∈ ψ(C), so that z = ψ(w), we have

f(ψ(λ−1w)) = ψ(λλ−1w) = ψ(w) = z.

This implies that ψ(C) is a backwards invariant open set intersecting the
Julia set. If S \ ψ(C) contained at least three points, then ψ(C) would be
hyperbolic. But then {fn} would be normal on ψ(C), a contradiction with
the fact that it intersects J(f). Hence S \ ψ(C) has at most two points, and
is an invariant closed set. It must consist of grand orbit finite points, and
ψ(C) is dense in S. (in particular it is dense in J(f).)

Problem (8-f. Counting basin components). Let A be the attracting basin
of a periodic point which may either be superattracting or geometrically
attracting. If some connected component of A is not periodic, show that
A has infinitely many components. Suppose then that A has only finitely
many components forming a periodic cycle. If these components are simply
connected, use the Riemann-Hurwitz formula 7.2 to show that the period is
at most two. (Example: f(z) = 1/z2.) If they are infinitely connected, show
that the period must be one.

Proof. Suppose U is a Fatou component of A such that U is not periodic
(recall that we have already proved that the image of a Fatou component is
also a Fatou component, if S is compact). In particular, U does not contain
any point of the periodic orbit O.

If f |A : A → A is surjective (which always occurs when S is com-
pact), then we may take the Fatou components containing the components
of f−1(U) ⊆ A. The iterated preimages of a component forming an orbit
will have to be distinct, otherwise U would be periodic.

In fact, suppose Û is a component of f−1(U), and let Ũ be the Fatou

component such that Û ⊆ Ũ . (Here we are still assuming that S is compact.)
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By the same reasonings used for when there are no asymptotic values, we
have that f |Û : Û → U is proper, and also f−1(∂U) ⊆ ∂Û . But since this is

contained in the Julia set, it must in fact be contained in ∂Ũ , and through
some more handwaving we have that Û = Ũ .

In summary: when S is compact, the image of a Fatou component is a
Fatou component, and any connected component of the preimage is also a
Fatou component.

Now assume A consists of finitely many components, being exactly the
ones containing the points of the periodic orbit O of period p.

If they are all simply connected, then χ(A) = p, and f |A : A → A is
a branched cover. It is of degree d, since a generic point in A will have d
preimages. If c is the number of critical points of f contained in A, then by
Riemann-Hurwitz:

c = dχ(A)− χ(A) = p(d− 1).

But since c ≤ 2d− 2, we necessarily have that either p = 1 or p = 2.
If p = 1, then exactly d − 1 critical points are contained in A = A0. If

p = 2, consisting of two components U1 and U2, considering the branched
coverings f : Ui → Ui+1, we have that exactly d − 1 critical points are
contained in U1 and exactly d− 1 critical points are contained in U2.

If A = U1 ∪ · · · ∪ Up, assume now that at least one component Ui is
infinitely connected (this can be assumed given the duality of simply con-
nected/infinitely connected). By removing the postcritical set of Ui+1 and
its preimage in Ui, we get a covering map, and by injectiveness on the funda-
mental group, we have that Ui+1 must also be infinitely connected. (Maybe
this argument could be improved.) Hence all components of A are infinitely
connected.

By conjugating f by a Möbius transformation, we may assume that one
of the points in the periodic orbit is infinity, say Up, so that all the other
components are bounded components of F (f). Let K = C\Up, the compact
set of all points whose orbit under fp is bounded. Naturally K is totally
invariant under fp, and U1, . . . , Up−1 ⊆ intK.

We know that fp can have no poles in K, so that fp is holomorphic on
a neighborhood of K. By the maximum modulus principle, the maximum of
|fp(z)| is attained on ∂K = ∂Up, so that intK ⊆ F (f) by normality. But if
Ui for i = 1, . . . , p− 1 were infinitely connected, there would be components
of J(f) in intK, a contradiction. More explicitly, Ĉ \ Ui has exactly one
unbounded component, which contains Up. Therefore any other component
must be contained in intK. This concludes that p = 1.
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9 Böttcher’s Theorem and Polynomial Dy-

namics

Comment on Theorem 9.3:
If we try to reproduce the arguments for Köenigs linearization, where we

have a homeomorphism between U and a disk in the C plane, we run into
trouble. This is mainly because we are not given the function ϕ : A → C
“globally” like in the Köenigs case, so there is no precise map from the closure
U ⊆ A that could even realize this homeomorphism.

What we do in fact globally have is H : A → [0, 1) an extension of |ϕ|
(I choose to denote this by a different letter to avoid confusion). Recall the
definition

H(p) = |ϕ(fk(p))|1/nk

,

for a large enough k so that fk(p) belongs to the conjugating neighborhood
of p (the value will not depend on which k large we choose). Note that
H(p) = 0 ⇐⇒ fn(p) = p̂ for some iterate n, and more generally,

H(f(p)) = H(p)n.

In the proof of theorem 9.3, the book claims that if the local inverse ψε
to the Böttcher map extends to D, r = 1 then H(p)→ 1 as p→ ∂U . This is
due to p escaping all compact sets of U , which can be described in a compact
exhaustion by H−1[0, r] for r < 1, since we have the conformal isomorphism
so that H is a proper map.

Moreover, if the inverse extends only to Dr for r < 1, we necessarily have
that H(p) = r for all p ∈ ∂U by continuity and properness.

Comment on Theorem 9.5:
It is claimed that each of the closures Ψ(A1+ε) contains the Julia set. We

prove this for the sake of completeness. Recall that Φ : C \ K → C \ D
is a conformal isomorphism given by the Böttcher coordinates, with inverse
Ψ, and that J = ∂K = ∂(C \ K). If z ∈ ∂K, then any neighborhood of z
intersects C \ K, which has image by Φ in thin annuli in C \ D. This also
stems from the properness of the map Φ, and H(p)→ 1 as p approaches the
boundary.

Later in the proof, we have the isomorphism Ψ : C \ Dr → U ⊂ C \K,
where U ⊂ C \ K and ∂U contains a critical point c. For f(c) = v ∈ U ,
|Φ(v)| = rn, we have the external ray R′ = Ψ(R) ⊂ U landing at v, and the
inverse image f−1(R′).

If z ∈ f−1(R′), then f(z) = Ψ(tΦ(v)) for some t ≥ 1, or Φ(f(z)) = tΦ(v).
If t > 1, evidently z ∈ U = Ψ(Dr) by seeing that Φ(f(z)) has n-th roots
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in C \ Dr, with conjugation with f . If t = 1, so that Φ(f(z)) = Φ(v),
or more precisely that f(z) = v, then any neighborhood N of z has its
image f(N) intersecting R′ \{v} by openess and maximum modulus, so that
z ∈ f−1(R′ \ {v}) ⊂ U .

Moreover, the proof claims that each ray R′
j mapping to R′ has to end

at a solution of f(z) = v. Why? Maybe the reasonings above already give a
proof of this claim, but I’m not thoroughly convinced.

Problem (9-a. Harmonic functions). (I will omit the first part of this prob-
lem.) Consider a polynomial f of degree n ≥ 2. Show that the Green’s
function G(z) = log |Φ(z)| is harmonic on C \K, that it tends to zero as z
approaches K, and that it satisfies

G(z) = log |z|+O(1) as z →∞.

(In other words, G(z)−log |z| is bounded for large z. A more precise estimate
would be G(z) = log |z|+ log |an|/(n− 1) + o(1) as |z| → ∞, where an is the
leading coefficient. Show that the function G is uniquely characterized by
these properties. Hence G is completely determined by the compact set K =
K(f), although our construction of G depends explicitly on the polynomial
f .

Proof. Recall that if Φ : U → C \ Dr are the Böttcher coordinates mapping
some neighborhood of infinity to another neighborhood of infinity biholo-
morphically, we may extend |Φ(z)| to the whole basin of attraction, mapping
A(∞) to (1,∞), and therefore G(z) = log |Φ(z)| is well defined as a map
from C \K → (0,∞). We can equivalently define

G(z) = lim
k→∞

1

nk
log |fk(z)|

by construction of the Böttcher map.
Recall that C \ K = A(∞) is connected, being the unique unbounded

component of C \ J , and that G satisfies

G(f(z)) = n ·G(z).

Being the logarithm of the absolute value of a non-vanishing holomorphic
function, G is harmonic: on any simply connected open set V of the domain,
Φ : V → C \ {0} factors through the exponential map, so that Φ(z) = eh(z)

for some h(z) holomorphic. Therefore log |Φ(z)| = Re (h(z)), being the real
part of a holomorphic function and therefore harmonic.

We show that G(z) approaches 0 as z approaches K. It is useful to
consider the neighborhoods of infinity adjoined∞, where G is continuous by
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assuming G(∞) = ∞. (One could also use the approach that G is proper.)
This implies that the compact sets {G(z) ≥ s} for s > 0 form a compact
exhaustion of A(∞), as f has no poles in A(∞). In order to approach
∂K = ∂A(∞), points must leave all compact sets ofA(∞), so that G(z)→ 0.

In order to show that G(z) = log |z|+O(1) as z →∞, it is equivalent to
show that |Φ(z)/z| is bounded for all sufficiently large n. But Φ(z)/z, under
the change of coordinates z 7→ 1/z, is equivalent to ϕ(z)/z as z → 0 in the
standard Böttcher coordinates, which approaches ϕ′(0). For the polynomial
f , we have

g(z) = 1/f(1/z) =
1

anz−n + · · ·+ a0
=

zn

a0zn + · · ·+ an
,

so that in power series form

g(z) = zn(
1

an
− an−1

a2n
z + . . .)

By taking c such that cn−1 = 1/an and conjugating h(z) = cg(z/c) we have

h(z) = zn(1− an−1

can
z + . . .)

(...)
If H were another harmonic function with these properties, then G−H

would be harmonic on C \ K, bounded near infinity, and tend to 0 as z
approachesK. By the maximum principle, this implies thatG−H is constant
equal to 0, so that G = H.

This implies that G is completely determined by the compact set K,
though not every compact set may give rise to a harmonic function in this
form. (This may be true, but does not follow from just the above: interesting
question. As G arises from K a Julia set, which properties of Julia sets do
you need to be true for K to give rise to a harmonic function?)

OBS.: From the above, in order forK ⊂ C compact to have an associated
Green’s function, satisfying the properties above, we must have that the
complement C \ K is connected, by the maximum modulus principle for
harmonic functions. For if U were a bounded component of C\K, as z → K
implies G(z)→ 0, we would have that G|U ≡ 0, a contradiction with G > 0.

Moreover, K must not have isolated points, otherwise by the removing
the singularity due to continuity we would have G(p) = 0 at that point,
another contradiction.
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Problem (9-c. Cellular sets and Riemann-Hurwitz). Let f be a polynomial
of degree n ≥ 2. For each number g > 0 let Vg be the bounded open set
consisting of all complex numbers z with G(z) < g. Using the maximum
modulus principle, show that each connected component of Vg is simply con-
nected. Hence the Euler characteristic χ(Vg) can be identified with withe
number of connected components of Vg. Show similarly that each compo-
nent of Vg intersects the filled Julia set.

The Riemann-Hurwitz formula applied to the map f : Vg → Vng asserts
that nχ(Vng) − χ(Vg) is equal to the number of critical points of f in Vg,
counted with multiplicity, conclude that Vg is connected if and only if it
cointains all of the n− 1 critical points of f .

A compact subset of Euclidean n-space is said to be cellular if it is a
nested intersection of closed topological n-cells, each containing the next in
its interior. Show that the filled Julia set K =

⋂
Vg is cellular (and hence

connected) if and only it contains all of the n − 1 finite critical points of f .
In fact, if one of these critical points lies outside of K, and hence outside of
some Vg, show that Vg and hence K is not connected.

Proof. First we see that the set {G(z) > g} is connected; naturally it con-
tains a neighborhood of infinity, and if it had a bounded component W , by
the maximum principle, G|W attains a maximum at ∂W ⊆ {G(z) ≤ g}, a
contradiction. This implies that {G(z) ≥ g} = {G(z) > g} = C \ Vg is also
connected.

Let U be a connected component of Vg, hence open and bounded. We
show that C\U is connected, so that U is simply connected. Naturally C\U
has a unique unbounded component, so we must show C\U has no bounded
component. Suppose A is a bounded component of C \ U (hence compact).

Since C \ Vg ⊆ C \ U , and as C \ Vg is connected, we actually have that
C \ Vg is contained in the unique unbounded component of C \ U , so that
(C \ Vg) ∩ A = ∅, and therefore A ⊂ Vg. However, ∂A ⊆ ∂U ⊆ ∂Vg, a
contradiction with A compactly contained in Vg. Hence C \ U is connected,
being the unbounded component, and U is simply connected.

Suppose now that U a component of Vg does not intersect the filled Julia
set K. This implies that G is harmonic on U , having maximum and mini-
mum on ∂U ⊆ ∂Vg = {G(z) = g}, so that G is constant throughout U , a
contradiction.

Suppose now that Vg is connected, so that χ(Vg) = 1. As

#crit(f) = nχ(Vng)− χ(Vg)

is the number of critical points of f |Vg : Vg → Vng counted with multiplicity,
we have #crit(f) ≥ n − 1. But f , considered as a polynomial on C, has at
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most n− 1 critical points. Hence #crit(f) = n− 1, and Vg contains all n− 1
(finite) critical points of f . Conversely, if Vg contains all the finite critical
points, so that

n− 1 = nχ(Vgn)− χ(Vg),

and χ(Vg) > 1, then χ(Vng) > 1. But all of the n− 1 critical points of f are
still in Vng, so we repeat this argument for f : Vng → Vn2g to conclude that
χ(Vn2g) > 1. But since for all sufficiently big g we have that Vg is simply
connected, so χ(Vg) = 1, this leads to a contradiction. Hence χ(Vg) = 1.

If K contains all of the n − 1 finite critical points of f , then from the
above, Vg is connected for all g > 0. Naturally for g < g′ we have Vg′
compactly contained in Vg, and we have K = G−1(0) =

⋂
Vg =

⋂
Vg, the

nested intersection of closed topological 2-cells.
Conversely, if at least one critical point lies outside of K, then for some

Vg we have χ(Vg) > 1 and for all g′ ≤ g, having more than one component,
so the nested intersection

⋂
Vg cannot be connected. More explicitly, let U

and V be two disjoint components of Vg. We can show that U ∩
⋂
g′<g Vg′ is

nonempty, as well as for V ; otherwise U ∩K = ∅, a contradiction.

Problem (9-d. Quadratic polynomials). Nw let f(z) = z2 + c, and suppose
that the critical orbit escapes to infinity. Let V = VG(c) be the open set
consisting of all z ∈ C with |Φ(z)| < |Φ(c)|. Show that V is conformally
isomorphic to D, and that f−1(V ) has two connected components. Conclude
that f−1|V has two holomorphic branches g0 and g1 mapping V into disjoint
open subsets, each having compact closure in V . Show that gj strictly con-
tracts the Poincaré metric of V . Proceeding as in problem 4-e, show that
J is a Cantor set, canonnically homeomorphic to the space of all infinite
sequences (j0, j1, j2, . . .) of zeros and ones.

Proof. Note that 0 is the unique (finite) critical point of f , and since G(0) >
0, G(c) = G(f(0)) = 2G(0) > G(0), so that V = VG(c) contains 0. From
the previous exercise, C \ V is connected and V is simply connected. By
the Riemann mapping theorem V is conformally isomorphic to D. From the
Riemann-Hurwitz formula, and since 0 /∈ VG(0), we have for f : VG(0) → VG(c):

0 = 2χ(VG(c))− χ(VG(0)) =⇒ χ(VG(0)) = 2.

Note also that for all g > G(0), we still have Vg connected, and so Vg
connected. As VG(0) =

⋂
g>G(0) Vg, we in fact have that VG(0) is connected,

despite VG(0) having two components.
(If we repeat the arguments in the proof of 9.5 in the book, we have

that two external rays will separate the two components of VG(0), meeting at
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exactly the critical point 0. Maybe one can work a little more to show that
∂VG(0) is a figure 8 with self-intersection at 0.)

We see that the two components A and B of VG(0) are interchanged by
z 7→ −z. Evidently this involution preserves VG(0) since f(−z) = f(z). By
connectedness, if it preserved one component, we could find a path from z
to −z in A , and then taking the image of this path by z 7→ −z, this creates
a loop around 0 in A. But A is simply connected and does not contain 0, a
contradiction. This shows not only that each Vg is centrally symmetric, but
that the two components of VG(0) are interchanged by z 7→ −z.

As
G(f(z)) < G(c) ⇐⇒ G(z) < G(0),

we can see that f−1(V ) = VG(0) has two components. As V does not contain
the critical value c and is simply connected, we can extend a the local inverses
of f |VG(0)

: VG(0) → V to all of V , each mapping to one of the two components
of VG(0) necessarily, since both intersect K and if g0 is an inverse, then g1 =
−g0 mapping to the other component is another inverse.

Each gj must strictly contract the hyperbolic metric since the components
of VG(0) are compactly contained in V , and the rest follows by the choices of
inverses we take by iteration.

10 Parabolic Fixed Points: the Leau-Fatou

Flower

Comment on Definition 10.2 and proof of 10.1:
We can see from the proof of lemma 10.1 that, for every ε > 0, the basin

of attraction Aj = A(ẑ, vj) will necessarily contain a sector around ẑ of the
form δvje

iθ, where |θ| < π/n− ε and δ = δ(ε) > 0 depends on ε. Any point
converging non-trivially to ẑ not only must be contained in one of these
basins (by definition and by lemma 10.1), but must also eventually be fully
contained in one of these sectors.

The connected component A0
j of Aj which contains one (and hence all) of

these sectors must then be invariant under f , and be the unique component
of Aj invariant under f , as all others must eventually map into it. Given the
proof of 10.1, we see that Aj ⊆ F (f) because on these small enough sectors,
compact sets converge uniformly to the fixed point ẑ.

Remark on the proof of 10.4: For a local expression f(z) = λz+O(z2),
where λ = e2πip/q is a primitive q-th root of unity and fixed point ẑ, we see
that ẑ must be a simple fixed point of fk for all k < q because

fk(z) = λkz +O(z2),
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and λk ̸= 1. When we perturb f = f0 generically to some ft, the (n+1)-fold
fixed point of f q0 breaks apart into n + 1 simple fixed points for f qt . We see
that ẑ must still be perturbed to a simple fixed point ẑt of ft; It will be the
unique fixed point of ft in a small neighborhood. Moreover, the simple fixed
point ẑ of fk0 will be preserved to a simple fixed point of fkt , which must in
fact be the point ẑt.

All the other n simple fixed points of ft are periodic of period q, and since
they cannot be fixed points for fkt for k < q, the period is exactly q. Hence
they are arranged into n/q orbits of period exactly q.

Question: How many of these orbits can be attracting/repelling?

Comment on Petals:
Note that from the definition of an attracting petal P , we have that

P ⊂ Aj for the attracting direction vj, but P can possibly not be the full
immediate basin A0

j , since we ask that the converge be uniform in P , not
just locally uniform, and for points nearby ẑ in A0

j but close to the repelling
directions, the convergence is not uniform (consider a neighborhood of infinity
for z 7→ z + 1).

Must A0
j be simply connected? This is an exercise later on.

Does this stem from a more general fact that for a polynomial, the Fatou
components are already simply connected?

Proposition 10.1. Let f : C → C be a polynomial and U a bounded Fatou
component of f . Then U is simply connected.

The proof should follow from the maximum principle: a point in the Julia
set “inside” of U could not be mapped to the boundary “outside” of U , for
it would contradict the maximum principle in some form. Maybe a more
precise and more general statement is that if Ũ is U along with all of its
holes, then f maps Ũ to Ũ .

(I saw a proof: apply the maximum principle for |fn|.)

Problem (10-a. Repelling petals and the Julia set). If f is a non-linear
rational function, then every repelling petal must intersect the Julia set of f .

Proof. Suppose that some repelling petal did not intersect the Julia set of
f , so that it is contained in the Fatou set. But since it intersects the im-
mediate attracting basins to either side of it, it must coincide with them as
components of the Fatou set. But then the attracting directions for these
attracting petals must be the same, so that the multiplicity is n = 1. But
this shows that ẑ is an isolated point of the Julia set, a contradiction with f
being non-linear.
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Problem (10-b. No small cycles). Show that no orbit z0 7→ z1 7→ · · · under f
can be contained in the union P ′

1∪· · ·∪P ′
n of repelling petals. Conclude that

the only periodic orbit which is completely contained in the neighborhood

N0 = {ẑ} ∪ P1 ∪ · · · ∪ Pn ∪ P ′
1 ∪ · · · ∪ P ′

n

is the fixed point ẑ itself. On the other hand, show that any non-linear
rational function has orbits which return to every repelling petal infinitely
often.

Proof. Suppose that some periodic orbit z0, . . . , zm−1, zm = z0 is contained in
the union of repelling petals. By considering g = fm, if f(z) = z+azn+1+. . .,
we have that

g(z) = z +mazn+1 + . . . ,

so that ẑ is still a parabolic fixed point with multiplier λ = 1 and multiplicity
n+ 1. The attracting and repelling petals for fm = g are the same ones for
f . In this case, we may assume that z0 is a fixed point contained in one of
the repelling petals. But by the Abel functional equation on the repelling
petals, they cannot admit fixed points.

Problem (10-e. Immediate parabolic basins). By an argument similar to
that of 8.7, show that the complement of an immediate parabolic basin is
either connected or else has uncountably many connected components.

Proof. We repeat the ideas of 8.7. Let P be an attracting petal within an
immediate parabolic basin A0 such that f(P) ⊆ P ∪ {ẑ}, and such that
∂P \{ẑ} does not intersect the postcritical set of f . Let Pk be the connected
component of f−k(P) which contais P , so that Pk ⊂ Pk+1 and A0 =

⋃
k≥0Pk.

Note that ∂P can be taken to be a simple closed curve, such that ∂P ∩
(Ĉ \ A0) = {ẑ}. Moreover, note that ẑ has no preimages in A0 by virtue
of non-trivial convergence. Each Pk is then bounded by some finite number
of simple closed curves, only one of which contains ẑ. We then reduce to
the case of whether each Pk is bounded by one simple closed curve, so that
Ĉ \ A0 is connected as a nested intersection of connected sets, or if some Pk
has two or more simple closed curves bounding it.

From 8.7, if Γ1, . . . ,Γm are the simple closed curves bounding Pk, and if C
is a connected component of P2k\Pk, then C → Pk\P is a branched covering.
Pk \ P has m+ 1 boundary curves, so C must have m+ 1 boundary curves
(as the boundaries of each Pk avoid postcritical points). Therefore each of
the m components of Ĉ \ Pk contain at least m connected components of
Ĉ \ P2k.(?)
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Problem (10-f. Examples with a parabolic point at infinity). Prove:

(1) For f(z) = z− 1/z show that there is a parabolic point at infinity with
two attracting directions. Since the upper and lower half-planes map
into themselves, conclude that J = R ∪ {∞}.

(2) For f(z) = z−1/z+1 show that J is a Cantor set contained in R∪{∞}.

(3) For f(z) = z + 1/z − 2 show that J is the interval [0,+∞].

(4) For f(z) = z+1/(1+z2) show that there are three attracting directions
at infinity. Show that one of the three immediate parabolic basins
contains all of R, and hence nearly disconnects the Riemann sphere.

Proof. (1) Locally around infinity, we have the map

g(w) = 1/f(1/w) =
1

1/w − w
=

w

1− w2
= w + w3 + w5 + . . .

so that the multiplicity of w = 0 as a parabolic fixed point is 2 + 1,
having two attracting directions. The upper and lower half planes
are preserved under iteration of f , so that by normality they must be
contained in the Fatou set, and J ⊆ R ∪ {∞}. The upper and lower
half planes must intersect the two immediate basins of attractions of
∞, and hence must coincide with them. As they must be disjoint, we
must have that J = R ∪ {∞}.

(2) By the change of coordinates w = 1/z, ∞ is a parabolic fixed point
with multiplier n+ 1 = 2, because

1
1
w
− w + 1

=
w

1 + w − w2
= w + Cw2 + · · ·

where C ̸= 0, so that there is a unique immediate attracting basin at
infinity. By the previous arguments, the upper and lower half planes
are invariant under f and must be contained in the Fatou set, so J ⊆
R ∪ {∞}.
The Julia set must have no isolated points and perfect, so we need
only prove that J(f) contains no intervals. Moreover, we see that
f(−1/z) = f(z), so that z ∈ J(f) ⇐⇒ −1/z ∈ J(f).
Note that points in (1,+∞) converge non-trivially to ∞, as f is in-
creasing and has no fixed points on this interval. This also implies
that (−1, 0) is contained in the Fatou set. If J contained an interval,
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it would have to contain an interval in [0, 1]. The derivative of f ev-
erywhere is greater than 1, so the interval gets expanded under f . If
we take an interval of biggest length of int J ∩ [0, 1], where eventually
it must be mapped back into [0, 1], we obtain a contradiction. Hence
J ∩ R must be a Cantor set.

(3) In this case, by the change of coordinates,

1
1
w
+ w − 2

=
w

1− 2w + w2
=

w

(1− w)2

= w(1− w + w2 + · · · )(1− w + w2 + · · · )
= w − 2w2 + 3w3 + . . . ,

so that the multiplicity of ∞ is 2 = 1 + 1, having only one attracting
direction. Note that f(z) = f(1/z), so that z ∈ J(f) ⇐⇒ 1/z ∈ J(f).
For z ≤ 0, we see that f(z) ≤ z − 2, so that fn(z) ≤ z − 2n and
z converges to ∞ non-trivially, so that (−∞, 0) ⊂ F (f). In fact, for
Re z < 0, we see that

Re f(z) = Re z +Re (1/z)− 2 < Re z − 2,

so that we also have z → ∞ non-trivially and the left half-plane con-
tained in the Fatou set.

Note that if w ≥ 0, then the two preimages of w are non-negative real
numbers. This implies that R+ ∪ {∞} is backwards invariant under f
(and in fact fully invariant); since f(0) = ∞ and 0 ∈ J(f), we have
that J(f) ⊆ [0,+∞]. By connectedness of Ĉ \ [0,+∞] ⊆ F (f), this
must be contained in a single component of F (f), being the immediate
attracting basin for ∞. If for some z ∈ (0,+∞) we had z ∈ F (f),
it would have to converge non-trivially to infinity. But this evidently
cannot happen due to the dynamics of f in R+, where every orbit under
iteration eventually falls within the interval [0, 2], mapping to infinity,
staying within the interval or returning to it infinitely often.

(4) Just calculate the coordinate change w = 1/z, check that the multi-
plicity is 4 = 3 + 1, and its easy to see that points in R converge to
infinity non-trivially within an immediate attracting basin.

11 Cremer Points and Siegel Disks

Problem (Generic Angles). Given a completely arbitrary sequence of pos-
itive real numbers ϵ1, ϵ2, . . . → 0 decreasing monotonically, let S(q0) be the
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set of all real numbers ξ such that

|ξ − p/q| < ϵq

for some fraction p/q in lowest terms with q > q0. Show that S(q0) is a dense
open subset of R, and conclude that the intersection

⋂
q0
S(q0), consisting

of all ξ for which this condition is satisfied for inifinitely many p/q, is a
countable intersection of dense open sets. As an example, taking ϵq = 2−q!

conclude that a generic real number belongs to the set S and hence satisfies
Cremer’s condition that lim inf |λq − 1|1/dq = 0 for every degree d.

Proof. Evidently S(q0) is the union of all open intervals (p/q − εq, p/q + εq)
over p ∈ Z and q > q0 such that gcd(p, q) = 1, so that it is open. Let I ⊂ R
be some non-empty open interval. Consider q > q0 for which ϵq <

1
2
|I|. As

Q is dense in R, there will exist some p′/q′ ∈ Q with q′ > q and p′/q′ ∈ 1
2
I,

where here 1
2
I represents the open interval with the same center as I but

half the radius. But this implies that (p′/q′ − ϵq′ , p′/q′ + ϵq′) ⊂ I, Showing
that S(q0) ∩ I ̸= ∅. This concludes that S(q0) is dense open. By the Baire
category theorem, S is dense and uncountable.

If we consider ϵq = 2−q!, then S consists of all real numbers ξ for which
there are infinitely many fractions p/q in lowest terms such that∣∣∣∣ξ − p

q

∣∣∣∣ < 1

2q!
.

Since then |λq − 1| ∼ |qξ − p| < q/2q! up to a fixed multiplicative constant,
we have that

log |λq − 1|1/dq < 1

dq
log

q

2q!
=

log q

dq
− log 2q!

dq
=

log q

dq
− log 2

q!

dq
,

where (log q)/dq → 0 as q → ∞. However, q!/dq → ∞ as q → ∞, so the
above expression has limit −∞, and

lim |λq − 1|1/dq = 0,

for all d ∈ N.

Problem (Cremer’s 1938 theorem). If f(z) = λz + a2z
2 + a3z

3 + · · ·, where
λ is not zero and not a root of unity, show that there is one and only one
formal power series of the form h(z) = z + h2z

2 + h3z
3 + · · · which formally

satisfies the condition that h(λz) = f(h(z)). In fact

hn =
an +Xn

λn − λ
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for n ≥ 2, where Xn = X(a2, . . . , an−1, h2, . . . , hn−1) is a certain polynomial
expression whose value can be computed inductively. Now suppose that we
choose the an inductively, always equal to zero or one, so that |an+Xn| ≥ 1/2.
If

lim inf
q→∞

|λq − 1|1/q = 0,

show that the uniquely defined power series h(z) has radius of convergence
zero. Conclude that f(z) is a holomorphic germ which is not locally lineariz-
able. Choosing the an more carefuly, show that we can even choose f(z) to
be an entire function.

Problem. First we see that if lim inf |λq − 1|1/q = 0, then we also have
lim inf |λq − λ|1/q = 0 (why?). We have

h(λz) = λz + λ2h2z
2 + λ3h3z

3 + · · · ,

and

f(h(z)) = λ

(
∞∑
i1

hi1z
i1

)
+ a2

(
∞∑
i2

hi2z
i2

)2

+ a3

(
∞∑
i3

hi3z
i3

)3

+ · · ·

= λh1z + (λh2 + a2h
2
1)z

2 + (λh3 + 2a2h1h2 + a3h
3
1)z

3 + · · ·

where the general term Hnz
n is given by

Hn =
∑

λhi1 + a2hi2,1hi2,2 + a3hi3,1hi3,2hi3,3 + . . .+ anhin,1 . . . hin,n)

where the sum is over all possible choices of indices i1, i2,j, . . . , in,j such that∑j
l=1 ij,l = n. Here we have h1 = 1. We also have that the first term of Hn is

λhn and the last is an, so that by equating Hn = λnhn, we get the the above
uniquely defined expression for hn, n ≥ 2, since λ is not a root of unity.

If we have choose the an inductively so that |an+Xn| ≥ 1/2 for all n ≥ 2,
then

|hn| ≥
1

2|λn − λ|
=⇒ |λn − λ| ≥ 1

2|hn|
.

As lim inf |λq − λ|1/q = 0, we have that lim inf(1/|hq|)1/q = 0, and

lim sup
q→∞

|hq|1/q =∞.

This implies that f(z) is a holomorphic germ which is not locally linearizable,
because if it were, the linearizing map would have to be h as given above by
the uniqueness of its coefficients, but h has radius of convergence zero.

If we want to inductively choose the coefficients an of f so that the ra-
dius of convergence of f is infinite, we must have lim supn→∞ |an|1/n = 0
simultaneously with lim sup |hn|1/n =∞. (How to proceed?)

52



Problem (11-d. Small Cycles). Suppose that

lim sup
q→∞

log log(1/|λq − 1|)
q

> log d > 0.

Modify the proof of 11.2 to show that: Any fixed point of multiplier λ for a
rational function f of degree d has the small cycles property. First choose
ε > 0 so that

log log(1/|λq − 1|) > (ε+ log d)q,

or equivalently
|λq − 1|1/dq < exp(−eεq)

for infinitely many q. The proof of 11.2 then constructs points zq of
period q with |zq| < exp(−eεq). Now use Taylor’s theorem to find δ > 0 so
that |f(z)| < eε|z| for |z| < δ, hence |f q(z)| < δ for |z| < e−qεδ. Finally, note
that exp(−e−εq) < e−qεδ for large q, and conclude that f has small cycles.

Proof. Theorem 11.2 is recalled:

Theorem 11.1 (Cremer Non-linearization). Given λ ∈ S1 and given d ≥ 2,
if the dq-th root of 1/|λq − 1| is unbounded as q →∞, then no fixed point of
multiplier λ for a rational function f of degree d can be locally linearizable.

In the proof, we may assume the fixed point is at the origin. The proof
is generally algebraic, where the fixed points for f q satisfy certain algebraic
equations and at least one must have small absolute value. As mentioned
above, we construct a periodic point zq of period q with |zq| < exp(−eεq).
By the definition of f ′ at z = 0 as a limit, since |f ′(0)| = 1, there is some
δ > 0 so that if 0 < |z| < δ, then |f(z)/z| < eε, and |f(z)| < eε|z|.

For |z| < e−qεδ, applying the above result k times for 1 ≤ k ≤ q, we have
|fk(z)| < e(k−q)εδ ≤ δ.

As
exp(−x)

δx
→ 0 as x → 0, for sufficiently big q we have exp(−e−qε) <

e−qεδ, so that the periodic point zq constructed is such that |fk(zq)| < δ,
having its entire orbit contained in this δ > 0 neighborhood. By taking
ε > 0 arbitrarily small and δ → 0 correspondingly, we find small cycles close
to the origin in every neighborhood.

12 The Holomorphic Fixed Point Formula for

Rational Maps

Comment on multiplicity:
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The multiplicity of a rational map f : Ĉ→ Ĉ at a point z0 ∈ C is defined
to be the unique integer m ≥ 1 such that

f(z)− z = am(z − z0)m + am+1(z − z0)m+1 + · · ·

and am ̸= 0, by taking the power series expansion around z0. Indeed, z0 is
a fixed point if and only if m ≥ 1, and m ≥ 2 if and only if the multiplier
λ of f at the fixed point z0 is λ = 1. For completeness, also recall that the
multiplier λ at a fixed point z0 is given by

f(z) = z0 + λ(z − z0) + a2(z − z0)2 + · · · .

Indeed, by conjugating f by translation z = w + z0, which amounts to
moving z0 to the origin, we have

f(w) = λw + a2w
2 + · · ·

around a neighborhood of 0. Both the notion of the multiplier and the
multiplicity may be extended to ∞ ∈ Ĉ by using the coordinate chart z 7→
1/z around ∞.

In fact, these notions may be generalized to any Riemann surface S and
a fixed point ẑ on S for f : S → S. One way of seeing that the multiplier is
well defined at a fixed point is that the differential

dfẑ : TẑS → TẑS

is a C-linear transformation on a 1-dimensional C-vector space, hence it must
be multiplication by a unique complex number.

Given a coordinate chart φ : U ⊆ S → C such that φ(ẑ) = 0, we find

φ ◦ f ◦ φ−1(z) = g(z) = λz + amz
m + am+1z

m+1 + · · · ,

where am is the first non-zero term after λz. Consider ψ another coordinate
chart such that ψ(ẑ) = 0 and

ψ ◦ f ◦ ψ−1(z) = h(z) = ηz + blz
l + bl+1z

l+1 + · · ·

We have that h = ϕ ◦ g ◦ ϕ−1, where ϕ = φ ◦ ψ−1 is a conformal map on a
neighborhood of 0 fixing 0. We just need to show that the multiplier and the
multiplicity are then invariant under this conformal change of coordinates.

First,

η = h′(0) = (ϕ ◦ g ◦ ϕ−1)′(0) = ϕ′(0)g′(0)ϕ′(0)−1 = g′(0) = λ.
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In fact, since we may pullback the differential dfẑ to a linear map dg0 : T0C→
T0C, where we identify T0C ∼= C, it will indeed act as multiplication by λ.

If we now consider

ϕ(z) = c1z + c2z
2 + . . . ,

and h(ϕ(z)) = ϕ(g(z)), by comparing coefficients, we have

h(c1z + c2z
2 + · · · )

= λ(c1z + c2z
2 + · · · ) + bl(c1z + c2z

2 + · · · )l + · · ·
= λc1z + λc2z

2 + · · ·+ λcl−1z
l−1 + (λcl + blc1)z

l + · · ·

and

ϕ(λz + amz
m + · · · )

= c1(λz + amz
m + · · · ) + c2(λz + amz

m + · · · )2 + · · ·
= λc1z + λc2z + · · ·+ λcm−1z

m−1 + (λcm + c1am)z
m + . . .

so that the indices l and m and the values bl and am must in fact agree, given
that c1 ̸= 0.

We also recall that ifm is the multiplicity of a parabolic fixed point ẑ with
multiplier 1, then there are m− 1 attracting directions and m− 1 repelling
directions at ẑ.

Later on in the chapter, it is also proved that the residue fixed point index

ι(f, z0) =
1

2πi

∫
dz

z − f(z)

is well defined on arbitrary Riemann surfaces.
On an open subset U ⊆ C and f : U → C holomorphic such that f(z0) =

z0, if m ≥ 2, so that λ = 1, it is also possible to express the multiplicity of f
as

m = ordz0(z − f(z)) = Resp((1− f ′(z))/(z − f(z)) = 1

2πi

∫
γ

1− f ′(z)

z − f(z)
dz,

where γ is any sufficiently small loop encircling z0.

Problem (12-a). If f(z) = z+αz2+βz3+(higher terms), with α ̸= 0, show
that the residue index is given by ι(f, 0) = β/α2. As an example, consider
the one parameter family of cubic maps

fα(z) = z3 + αz2 + z

55



with a double fixed point at the origin. Using 12.4 or by direct calculation,
show that the remaining finite fixed point z = −α has a multiplier λ = 1+α2,
and hence is attracting if and only if α lies within a figure eight shaped
region bounded by a lemniscate. This lemniscate is clearly visible as the
boundary of the main upper and lower regions in Figure 26, which shows the
α-parameter plane. Now, for α ̸= 0, suppose that we perturb fα to a map
z 7→ z3 + αz2 + (1 − ε)z, ao that the double fixed point at the origin splits
up into two distinct nearby fixed points. First suppose that α2 liesinside
the disk of radius 1/2 centered at 1/2, or equivalently that α lies within a
corresponding region bounded by a lemniscate shaped like the symbol ∞.
(This has been drawn in as the dotted line in Figure 26.) Show that we can
choose a small ε ∈ C so that both of the fixed points near zero are attracting.
On the other hand, if α lies strictly outside this region, show for any such
perturbation that at least one of the fixed points near zero must be repelling.

Proof. We have

f(z) = z + αz2 + βz3 + · · ·
=⇒ z − f(z) = −αz2 − βz3 − · · ·

=⇒ z − f(z)
z2

= −α− βz − · · ·

=⇒ z2

z − f(z)
=

1

−α
+

β

α2
z + · · · ,

since we have to calculate the derivative of the inverse. Hence

1

z − f(z)
= −α 1

z2
+

β

α2

1

z
+ · · · ,

so that the residue is indeed β/α2. (In order to generalize this index to pos-
sibly higher order non-vanishing coefficients of f , we would need to calculate
higher derivatives of the inverse of (z − f(z)/zk.)

For the cubic family fα, the fixed point at z = 0 has multiplier 1 and
multiplicity 2, being parabolic independently of α, where we may calculate
the residue fixed point index ι(fα, 0) = 1/α2. As the sum of indices of the
finite fixed points of fα must be 0, we have

ι(fα,−α) = −
1

α2
=

1

1− λ
,

where λ is its multiplier, since the fixed point must be simple. Hence λ =
1 + α2. This point is attracting if and only if |1 + α2| = |α2 − (−1)| < 1, so
that α2 lies in a unit disk centered at −1. The resulting figure for α is the
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lemniscate; it is the preimage of this disk under the squaring map, so that
they are simply connected, one is bounded by the angles π/4 < θ < 3π/4,
and the other by 5π/4 < θ < 7π/4.

We perturb fα(z) to fα,ε(z) = z3 + αz2 + (1− ε)z. The equation for the
fixed points of the perturbed map is

z3 + αz2 − εz,

and one of the points is still 0. Its multiplier is 1− ε, so that ι(fα,ε, 0) = 1/ε.
For the other fixed point of fα, which persists when perturbed, its index
varies holomorphically with ε, being −1/α2 for ε = 0.

For α2 in the disk of radius 1/2 centered at 1/2, 1/α2 lies in the half-
plane Re z > 1, hence −1/α2 lies in the halfplane Re z < −1. For all suffi-
ciently small ε, we may still guarantee that the index −1/α2 has real part
Re (−1/α2) ≤ −c < −1, so we only need to take ε so that 1/ε has real part
not much bigger than 1/2.

Explicitly, if z0 = 0 and z1 are the fixed points near 0 with residues
ι0 = 1/ε and ι1, so that Re ι0 +Re ι1 ≥ c > 1, We want

1/2 < Re ι0 < c/2,

so that Re ι1 > 1/2. But this is always possible, by taking 1/ε with suffi-
ciently big imaginary part in the strip 1/2 < Re z < c/2. Hence both z0 and
z1 will be attracting.

Now suppose α2 lies strictly outside the disk of radius 1/2 centered at
1/2. Then Re (−1/α2) ≥ −1, so that

Re ι0 +Re ι1 ≤ 1,

and it cannot be the case that both are attracting, that is, Re ιi > 1/2.

Problem (12-c). Any fixed point z0 for f is evidently also a fixed point for
fk. If z0 is attracting (or repelling), show that ι(fk, z0) tends to the limit 1
(or 0) as k →∞. For a fixed point of multiplicity m ≥ 2, show that ι(fk, z0)
tends to the limit m/2.

Proof. If |λ| ≠ 1, then on a chart φ where φ(z0) = 0, we locally have that

f(z) = λz + a2z
2 + · · · =⇒ fk(z) = λkz + · · · ,

that is, the multiplier of fk at z0 is λk. Then

ι(fk, z0) =
1

1− λk
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which tends to 1 if |λ| < 1, or to 0 if |λ| > 1.
If z0 is a fixed point with multiplicity m = n + 1 ≥ 2, we consider the

normal form
f(z) = z + αzn+1 + βz2n+1 + · · ·

where ι(f, z0) = β/α2. We compute the expansion of higher iterates of f . It
is straightfoward to see that the higher iterates will still be of the form

fk(z) = z + αkz
n+1 + βkz

2n+1 + · · · ,

and we also see that {
αk+1 = αk + α,

βk+1 = βk + β + (n+ 1)ααk.

This implies that αk = kα, as we have already seen, and

βk+1 = βk + β + (n+ 1)kα2.

Therefore

βk = kβ + (n+ 1)α2k(k − 1)

2
.

This implies that

βk
α2
k

=
1

2
· 2kβ + (n+ 1)k(k − 1)α2

k2α2
=

1

2
· (n+ 1)k2α2 + (2β − (n+ 1)α2)k

k2α2

whose limit as k → ∞ is (n + 1)/2 = m/2, that is, the multiplicity over
2.

Problem (12-d). Verify the generalized fixed point formula of 12.5 in the
following special cases:

If f : T → T is a linear map with derivative f ′ identically equal to α,
show that the trace τ of the induced action on the 1-dimensional space of
holomorphic 1-forms is equal to α. If f is not the identity map, show that
there are |1− α|2 fixed points, each with index ι = 1/(1− α), and conclude
that

∑
ι = 1− τ , as required.

Now suppose that S is a compact surface of genus g and that f : S → S
is an involution with k fixed points. Use the Riemann-Hurwitz formula to
conclude that the quotient S/f is a surface of genus ĝ = (2 + 2g − k)/4.
For the induced action on the g-dimensional vector space of holomorphic 1-
forms, show that ĝ of the eigenvalues are equal to +1, that the remaining
g − ĝ are equal to −1, so that the trace τ equals 2ĝ − g. Conclude that∑
ι = k/2 = 1− τ .
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Proof. On a torus, (by Riemann-Roch) the space of holomorphic 1-forms is
actually 1-dimensional, generated by dz projected onto T, since translations
preserve dz. We also see that the induced map on the pullback f ∗ : Ω(T)→
Ω(T) acts by multiplication by α:

(f ∗ω)z(v) = ωf(z)(dfz(v)) = ωf(z)(αv) = αωf(z)(v),

so that f ∗ω = αω. As it is a 1-dimensional complex vector space, the trace
τ is also equal to α. (Can we show this without Riemann-Roch?)

We have previously seen that if f is not the identity, it has |1− α|2 fixed
points, the solutions of

z − f(z) = (1− α)z − c,

a map of degree |1− α|2 if α ̸= 1. As the multiplier of each fixed point is α,
the index ι is 1/(1− α), so that naturally∑

ι

= |1− α|2 · 1

1− α
= 1− α = 1− α = 1− τ .

For the second part, if z0 ∈ S is a fixed point, we see that dfz0 : Tz0S →
Tz0S must be such that (dfz0)

2 = Id, or more explicitly, the multiplier of f 2 at
z0 must be 1. This implies that the multiplier of f at z0 is ±1. Suppose the
multiplier is 1, and that locally f is not the identity, so that the multiplicity
m of z0 as a fixed point is ≥ 2, and

f(z) = z + amz
m + · · · =⇒ f 2(z) = z + 2amz

m + · · ·

but as f 2 = Id, we must have that am = 0, a contradiction. Hence the mul-
tiplier of f at the fixed point z0 must be −1. We want to find a holomorphic
chart φ around z0 such that locally f(z) = −z. (Is this possible?)

Since the problem is local, assume z0 = 0, and let U, V be neighborhoods
of 0 such that U ⊆ V and f(U) ⊆ V . We may also assume U = Dr for some
r > 0, and by conjugating f by z/r, we may assume r = 1. Note that for a
sufficiently small choice of r > 0 initially, we have that f maps D ⊆ V onto
f(D) ⊆ V biholomorphically. Moreover, by Koebe’s one quarter theorem,
D1/4 ⊆ f(D).

If we know that the quotient S/f is well defined as a Riemann surface
and that the fixed points are exactly the branch points of the quotient f :
S → S/f , where locally f is two-to-one, we have that

k = 2χ(S/f)− χ(S) = 2(2− 2ĝ) + 2g − 2
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so that ĝ = (2 + 2g − k)/4.
We know that dimΩ(S) = g, And the induced pullback map f ∗ : Ω(S)→

Ω(S) is such that (f ∗)2 = Id. We also have the pullback π∗ : Ω(S/f)→ Ω(S).
We also consider the pushforward map π∗ : Ω(S) → Ω(S/f); for ω ∈ Ω(S),
let

ω̃ =
1

2
(ω + f ∗ω),

so that ω̃ is f ∗-invariant, and it descends naturally to a holomorphic 1-
form on Ω(S/f). One way to make this explicit is considering q ∈ S/f ,
v ∈ Tq(S/f), p ∈ π−1(q) and u ∈ TpS such that dfp(u) = v. Then we set
(π∗ω)p(v) = ω̃p(u). This will not depend on the choice of p ∈ π−1(q), and is
holomorphic. If q happens to be a branch value, we may apply singularity
removability.

Another way of viewing it: if g : X → Y is a holomorphic finite branched
covering, then away from the branch values g is a covering map, so that we
may define the pushfoward by the pullback of the local inverses:

(g∗ω)q =
∑

p∈g−1(q)

((g−1
p )∗ω)p,

where g−1
p is a local inverse of g sending q to p. Given that the finite covering

will have a group of automorphisms acting on X0 giving the quotient Y 0,
this matches up with the first definition (except up to multiplication by the
degree of the covering?).

In any case, if α ∈ Ω(S/f), we have that π∗α is f ∗-invariant, since π◦f =
π. Hence π̃∗α = π∗α. It is easy to see then that π∗π

∗α = α (or 2α?). In any
case, this allows us to show that π∗ is injective, since if π∗α = 0, then α = 0.
As seen above, the image of Ω(S/f) in Ω(S) is fixed by f ∗, giving rise to ĝ
eigenvalues equal to +1. Conversely, if f ∗ω = ω, then ω̃ = ω, so that ω will
the the pullback of π∗ω (or 1

2
π∗ω?).

More generally, in this specific case of an involution on S, we have the
decomposition

ω =
1

2
(ω + f ∗ω) +

1

2
(ω − f ∗ω)

of Ω(S) as the direct sum of spaces of forms ω such that f ∗ω = ω, and of
forms ω such that f ∗ω = −ω. Naturally we then have g − ĝ eigenvalues of
f ∗ equal to −1, so that the trace τ is equal to ĝ · 1 + (g− ĝ) · (−1) = 2ĝ− g.

Since the multiplier at each fixed point is −1, so that ι = 1/2, we have∑
ι =

k

2
= 2ĝ − g = 1− τ .
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Remark: a local treatment of the pushforward of holomorphic forms is
also via the following. If φ(z) = zn is the n-degree branched covering of D
over D, and ω = zkdz, then

φ∗ω =

{
z

k+1
n

−1dz, if k ≡ −1 mod n;

0, otherwise.

Remark: If S is a compact Riemann surface of genus g ≥ 2, whose
universal cover is the hyperbolic plane, we have that the group of isometries
of S must be a compact Lie Group, whose Lie algebra corresponds to the
Killing fields. But because of negative sectional curvature of S, there can be
no non-trivial Killing fields on S, so that the group of isometries is discrete,
and therefore finite.

If f : S → S is holomorphic, it will be a branched covering of degree d
with b branch points counted with multiplicity, so that

b = dχ(S)− χ(S) = (d− 1)χ(S) ≤ 0,

since χ(S) = 2 − 2g ≤ 0. Hence we must have that d = 1, and f is a
biholomorphism from S to S, and therefore preserve the Poincaré metric on
S. But because of the finiteness of the group of isometries, f must have finite
order, so that for some n, fn = Id. We may therefore try to generalize the
results above, for involutions, to general finite order automorphisms of S.
But this would still beget the question of how exactly we know that S/f is
a genuine Riemann surface.

Remark: We try to show that S/f is a Riemann surface. Indeed, the
covering is well defined away from branch values and branch points, where it
is easy to describe a holomorphic chart around points away from branch val-
ues. (More explicitly, removing branch values and their preimages, we have
a finite group acting without fixed points by holomorphic automorphisms,
inducing a holomorphic structure on the quotient.)

Therefore we must understand what happens around the branch points,
that is, the fixed points of f . We know that each of them has multiplier −1;
it seems intuitive that locally f would act like z 7→ −z around these fixed
points, so that we could construct a chart z 7→ z2 around the projection of
this fixed point. We then consider the following question:

Proposition 12.1. Let f be a holomorphic germ having a fixed point at 0,
so that f ◦ f = Id and f ̸= Id. Then there exists a holomorphic conjugation
φ, with positive radius of convergence, so that φ ◦ f ◦ φ−1(z) = −z.
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The not-so-completely precise idea should be: By conjugating by z 7→
z/r, we may assume that f is defined on D. Consider R+ = R+ ∩ D the
positive real axis in D, and its image f(R+). This will cut a smaller disk
(for example, D1/4, by Köebe’s one quarter theorem) into two parts, one
intuitively corresponding to the upper half-disk, and another to the lower.
We find a holomorphic map ψ : D ∩ H+ extending to the boundary which
maps 0 7→ 0, R+ ∩ D → R+, and R− ∩ D → f(R+). We also map the lower
half-disk by z 7→ f(ψ(−z)). This resulting map will be holomorphic outside
of the real line and continuous on it; by the Schwarz reflection principle, it
is holomorphic throughout, giving a conjugacy between f and z 7→ −z.

With this conjugation around the fixed points of f : S → S, we may then
construct the charts on S/f around the projection of these fixed points, since
the unit disk projects to a disk with a cone point at the origin, mapped 2 to
1 by z 7→ z2.

13 Most Periodic Orbits Repel

We state the standard version of the implicit function theorem. Consider
F : Rn+m → Rm a C1 function, where the coordinates in Rn+m are expressed
as (x, y). for (a, b) ∈ Rn+m, and

F (x, y) = (F 1(x, y), . . . , Fm(x, y)).

we have tha Jacobian matrix

JF (a, b) =



∂F 1

∂x1
(a, b) · · · ∂F 1

∂xn
(a, b)

∂F 1

∂y1
(a, b) · · · ∂F 1

∂ym
(a, b)

∂F 2

∂x1
(a, b) · · · ∂F 2

∂xn
(a, b)

∂F 2

∂y1
(a, b) · · · ∂F 2

∂ym
(a, b)

...
. . .

...
...

. . .
...

∂Fm

∂x1
(a, b) · · · ∂Fm

∂xn
(a, b)

∂Fm

∂y1
(a, b) · · · ∂Fm

∂ym
(a, b)


or succintly

JF (a, b) =

[
∂F i

∂xj
(a, b)

∂F i

∂yj
(a, b)

]
=
[
JF,x(a, b) JF,y(a, b)

]
.

Theorem 13.1. If F (a, b) = 0 and the matrix JF,y(a, b) of partial derivatives
with respect to y is invertible, there exists an open subset U ⊆ Rn containing
a and a unique C1 function G : U → Rn such that G(a) = b and, for all
x ∈ U , G(x, F (x)) = 0. Moreover, the Jacobian matrix of G at x ∈ U is
given by

JG(x) = −JF,y(x, g(x))−1JF,x(x, g(x)).
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Therefore, for some (a′, b′) ∈ Rm+n such that F (a′, b′) = 0 and a′ is
sufficiently close to a, then necessarily (a′, b′) lies in the graph of G, so that
G(a′) = b′.

We can carry over the theorem to the holomorphic case. If C × C has
coordinates (z, w), f : C × C → C is a holomorphic function such that
f(a, b) = 0 and ∂f

∂w
(a, b) ̸= 0, Then locally around a we may express the

solution set f(z, w) = 0 of f as the graph of a holomrphic function g : U → C,
where g(a) = b.

Suppose now that ft : V × C → C is holomorphic, where V is a small
neighborhood of 0. Let z0 be a fixed point of f0 whose multiplier is ̸= 1, and
F : V × C→ C be given by

F (t, z) = ft(z)− z.

We then have that F (0, z0) = 0 and ∂F
∂z
(0, z0) = f ′

0(z0) − 1 ̸= 0, so that we
may find U ⊆ V small and a unique holomorphic function g : U → C such
that g(0) = z0 and, for all t ∈ U , F (t, g(t)) = 0, that is, ft(g(t)) = g(t).
Explicitly, this means that for a sufficiently small perturbation of t = 0,
we will find a unique fixed point zt of ft “close” to z0, following along this
parametrization zt = g(t). We may also consider analytic continuations of
zt = g(t) for perturbations t ∈ V . Naturally, the multiplier λt of zt as a fixed
point of ft is a holomorphic function of t as well.

The same reasoning applies if z0 is periodic point of (prime) period q,
whose multiplier λ = (f q0 )

′(z0) is λ ̸= 1. We consider

F (t, z) = f qt (z)− z,

which has q solutions (0, z0), (0, f(z0)), . . . , (0, f
q−1(z0)), corresponding to the

points in the orbit of z0. We then find holomorphic functions g0, g1, . . . , gq−1 :
U → C that follow the periodic points so that

f qt (gi(t)) = gi(t),

being also a periodic point of period q for z0. By uniqueness of the functions
gi, we actually have that

ft(gi(t)) = gi+1(t),

since ft ◦ gi would also satisfy the conditions for gi+1. Hence these points
indeed follow the same orbit as z0, and for small t, we may assume they are
all distinct, so that the orbit has prime period q.
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What happens more precisely if the multiplier is a root of unity? We
have discussed this situation previously, which we repeat here. Suppose ẑ is
a fixed point for f , whose local expression around ẑ is

f(z) = λz + azm+1 + o(zm+1),

so that the multiplier λ = e2πip/q is a primitive q-th root of unity. We want
to find an explicit local expression of fk, for curiosity. If

fk(z) = λkz + akz
m+1 + · · · ,

we have that a1 = a ̸= 0 and

ak+1 = λak + a(λk)m+1.

Letting bk = ak/λ
k, so that b1 = a/λ, we obtain

bk+1 = bk +
a

λ
(λm)k =⇒ bk =

a

λ

k−1∑
i=0

(λm)i,

and therefore ak = aλk−1
∑k−1

i=0 λ
mi. Then

fk(z) = λkz +
a

λ

(
k−1∑
i=0

(λm)i

)
zm+1 +O(zm+2).

We have two different situations, whether λm = 1 or not. Note also that
λm = 1 if and only if q divides m:

fk(z) =

λ
kz + kλk−1azm+1 + · · · , if q | m;

λkz + λk−11− λmk

1− λm
azm+1 + · · · , if q ̸ | m.

The coefficient of zm+1 never vanishes in the first case, so that ẑ is a fixed
point for f q of multiplicity m+1. In the second case, we actually get that the
multiplicity of ẑ as a fixed point of f q is greater than m+ 1, as 1− λmq = 0.

Suppose that ẑ is a fixed point of f q of multiplicity n + 1. A previous
result from the book affirms that n is a multiple of q, as multiplication by λ
permutes the n attracting directions of the parabolic fixed point. Moreover,
ẑ must be a simple fixed point of fk for all k < q, because

fk(z) = λkz +O(z2)

and λk ̸= 1. When we perturb f = f0 generically to some ft, the (n+1)-fold
fixed point of f q0 breaks apart into n + 1 simple fixed points for f qt . We see
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that ẑ must still be perturbed to a simple fixed point ẑt of ft; It will be the
unique fixed point of ft in a small neighborhood. The simple fixed point ẑ
of fk0 will be preserved to a simple fixed point of fkt , which must in fact be
the point ẑt.

All the other n simple fixed points of ft are periodic of period q, and since
they cannot be fixed points for fkt for k < q, the period is exactly q. Hence
they are arranged into n/q orbits of period exactly q.

Possibly a similar analysis of perturbation can be made when ẑ is periodic
of period l with multiplier a primitive q-th root of unity, but with more
details.

(Third edition: I have not seen the studies on the residue itératif, or
the definitions on parabolic attracting and parabolic repelling fixed points,
but may look into these at a later time. These give better descriptions as
to whether you get attracting or repelling fixed points when you perturb a
parabolic fixed point.)

14 Repelling Cycles are Dense in J

Remark on Proof 14.1, following Julia: there are possibly many
ways of strengthening the statement that the repelling periodic orbits are
dense in the Julia set. One way of doing this through the proof is being able
to show that, for any finite collection of open sets U1, . . . , Um such that each
Ui intersects J(f), there exists a repelling orbit O passing through all of the
Ui. To see this, it is enough to consider more preimages of zr ∈ U1 passing
through the open sets Ui, i ≥ 2 before coming back to the neighborhood N0.
This is also a stronger statement than just topological transitivity of f on
J(f).

Comment on Proof of 14.4: To be more explicit in the proof: from
the arguments, it is straightforward to see that indeed some subsequence of
interated inverse maps {f−ni} defined on ∆ ∩ V converge locally uniformly
to the identity on ∆ ∩ V . To upgrade this convergence to be on all of V , we
check that the orbits of the points in V under {f−ni} avoid the central part
of ∆; otherwise we would have a point in this central part of ∆ mapping to V
under some fni , which cannot happen as ∆ is a rotation domain, preserving
inner disks. The rest of the proof follows.
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15 Herman Rings

Let f : R/Z → R/Z be an arbitrary orientation-preserving continuous
function. We show that the rotation number is well defined and independent
of both the choice of lift F and the choice of t0 ∈ R. Naturally, if F is a
given lift, we have the diagram

R F //

p

��

R
p

��

R/Z f
// R/Z

so that p(F (t)) = f(p(t)). Note that for n ∈ N, F n is a lift of fn by induction,
and if f is a homeomorphism, this is true for n ∈ Z.

Now assume F̃ is another arbitrary lift of f . As p is an additive group
homomorphism, we have that

p(F (t)− F̃ (t)) = p(F (t))− p(F̃ (t)) = f(p(t))− f(p(t)) = 0,

so that F (t)− F̃ (t) must be constantly equal to some integer by continuity.

This concludes that any lift F̃ of f is equal to F up to some integer additive
constant.

Note that F (t + 1) is also a lift of f , since p(F (t + 1)) = f(p(t + 1)) =
f(p(t)), so that

F (t+ 1) = F (t) +m,

for some m ∈ Z. Inductively, for l ∈ N, F (t + l) = F (t) + lm, and then
F 2(t+ 1) = F (F (t) +m) = F 2(t) +m2. This generalizes to

F n(t+ 1) = F n(t) +mn

by induction as well.
If f preserves orientation, then m ≥ 0, And if f is a homeomorphism,

must have m = 1 and
F (t+ 1) = F (t) + 1,

otherwise for some s ∈ (t, t+1) we would have F (s) = F (t)+1, contradicting
injectivity of f . Furthermore, F n(t+ 1) = F n(t) + 1 for n ∈ Z.

Considering only the case where f is a homeomorphism, we define

G(t) = F (t)− t,

where from the above G is a periodic function of period 1, hence bounded
by some M ∈ R. Therefore

F n(t)− t
n

=
1

n

n−1∑
i=0

(F i+1(t)− F i(t)) =
1

n

n−1∑
i=0

G(F i(t))
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is also bounded by M . More generally, for n2 > n1 ∈ N, we have

F n2(t)− F n1(t)

n2 − n1

=
1

n2 − n1

n2−1∑
i=n1

(F i+1(t)− F i(t)) =

∑n2−1
i=n1

G(F i(t))

n2 − n1

≤M.

In order to consider whether the limit Fn(t)
n

exists for some t ∈ R, we see
that if it exists for a given t, then it exists and is equal for all t+m, m ∈ Z,
given that

F n(t+m)

n
=
F n(t) +m

n
=
F n(t)

n
+
m

n
,

and m/n → 0. Now, for t1, t2 ∈ [0, 1) such that t1 < t2, as F is monotone
increasing, we have

F n(t2)− F n(t1) ≤ F n(1)− F n(0) = 1.

This implies that

F n(t2)− F n(t1)

n
→ 0, as n→∞,

so that if the limit exists for t1, it also exists for t2. Hence we only need to
prove that the limit exists for one t ∈ R.

I will not prove here that the limit exists: the proof can be found in
Devaney’s An Introduction to Chaotic Dynamical Systems.

It is also straightforward to see that

rot(fk) = k · rot(fk),

since

Rot(F k) = lim
n→∞

F kn(t0)

n
= k · lim

n→∞

F nk(t0)

nk
= k · rot(F ).

Remark on Lemma 15.7: The fact that ∂U has exactly two com-
ponents, both of which are connected, stem from the fact that U itself is
conformally equivalent to an annulus where f acts as an irrational rotatio,
thereby preserving concenctric circles. If the annulus is AR = {1 < |z| < R}
and φ is the conformal equivalence, we then have the subsets

Ca,b = {z ∈ U : a < |φ(z)| < b}

of U , and we may consider the nested intersections⋂
n≥1

C1,1+1/n,
⋂
n≥1

CR−1/n,R
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accumulating on the two components of ∂U , being compact connected sets.
Moreover, we can see that they cannot be single points, otherwise U would
be a punctured disk or punctured complex plane (?).

Problem (15-a. No polynomial Herman rings). Using the maximum modu-
lus principle, show that no polynomial can have a Herman ring.

Proof. Suppose U is a Herman ring for a polynomial f : C → C, such that
C\U has two components A and B, where A is compact and B is unbounded,
containing a neighborhood of infinity. Then ∂A ⊆ ∂U , and by the maximum
modulus principle,

max
z∈A
|f(z)| = max

z∈∂A
|f(z)|.

But for z ∈ ∂U , its orbit is bounded, being contained in ∂U since f(U) =
U and therefore f(U) ⊆ f(U) = U . Moreover,

A ⊆ A ∪ int{z ∈ U : 1 < |φ(z)| < r}

for all r > 1, where the orbit is still bounded. This implies not only that
intA ⊆ F (f), but that A ⊆ F (f). But this gives a contradiction, since
∂A ⊆ ∂U must be contained in J(f).

Problem (15-b. Symmetry of Blaschke products). For any Blaschke product
f : Ĉ→ Ĉ show that the Julia set is invariant under the inversion z 7→ 1/z.
Show that z is a critical point of f if and only if 1/z is a critical point, and
show that z is a zero of f if and only if 1/z is a pole.

Proof. Recall that a Blaschke product is of the form

f(z) = e2πiλβa1(z) · · · βak(z),

where

βa(z) =
1− a
1− a

· z − a
1− az

.

(In this case, the factor (1− a)/(1− a) is included to ensure that the point
z = 1 is fixed.) Note that

βa(1/z) =
1− a
1− a

· 1/z − a
1− a/z

=
1− a
1− a

· 1− za
z − a

,

so that
1

βa(1/z)
=

1− a
1− a

· z − a
1− az

= βa(z).
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Since βa is conjugate to itself by z 7→ 1/z, it must map its Julia set to
itself via the inversion. In general, if g ◦ f ◦ g−1 = f , then g is a symmetry
of J(f).

Moreover, since g is a diffeomorphism (or in this case an anticonformal
isomorphism), that it preserves critical points is straightfoward from the
chain rule on f ◦ g = g ◦ f . And since g interchanges 0 and ∞, the last part
also follows easily.

Problem (15-c. Proper self-maps of D). A holomorphic map f : D → D is
said to be proper if the inverse image of any compact subset of D is compact.
Show that any proper holomorphic map from D onto itself can be expressed
uniquely as a Blaschke product, with aj ∈ D.

Proof. Uniqueness follows easily from the description of the Blasckhe prod-
ucts, since a1, . . . , ak} = f−1(0) and e2πiλ = f(1). As f is a proper holo-
morphic map (being automatically surjective), it is a global holomorphic
branched covering, having a well defined degree d, as the number of preim-
ages of a non-critical value. Suppose a ∈ f−1(0), and multiplty f by (βa)

−1.
This will reduce the degree of f by one, and inductively, we may recover f
as a Blaschke product.

Problem (15-d. Computing rotation numbers). (1) Show that the rota-
tion number rot(f) can be deduced directly from the cyclic order rela-
tions of a single orbit, in a form convenient for computer calculations,
as follows. Choose representatives ti ∈ [0, 1) for the elements of the
orbit of zero, so that ti ≡ f i(0) mod Z. If we exclude the trivial case
t1 = 0, then t1 cuts [0, 1) into two disjoint intervals I1 = [0, t1) and
I0 = [t1, 1). Define a sequence of bits (b2, b3, b4, . . .) by the requirement
that tn ∈ Ibn . If F is the unique lift with F (0) = t1, show that

Rot(F ) = lim
n→∞

b2 + b3 + · · ·+ bn
n

.

(2) Furthermore, if a second such map f ′ has bit sequence (b′2, b
′
3, b

′
4 . . .),

and if
(b2, b3, b4, . . .) < (b′2, b

′
3, b

′
4, . . .)

using the lexicographic order for bit sequences, show that

Rot(F ) ≤ Rot(F ′).

Proof. We may consider b1 = 0. Let kn be the interger uniquely defined
integer such that tn ∈ [kn, kn + 1), where k1 = 0. We know that F (0) = t1
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and F (t+ 1) = F (t) + 1, so that F mas the interval [0, 1] homeomorphically
onto [t1, t1 + 1]. This shows that if b2 = 0, then t2 = F 2(0) ∈ [t1, 1) and
k2 = 0, and if b2 = 1, then F 2(0) ∈ [1, t1 + 1) and k2 = 1. In essence, kn
represents how many rotations f has made on the circle over n iterates.

Suppose then tn ∈ [kn, kn + 1), where tn ∈ [kn, kn + t1) or tn ∈ [kn +
t1, kn + 1), according to whether bn = 1 or bn = 0, respectively. Note that
F [kn, kn + 1) = [kn + t1, kn + t1 + 1), monotonically. This image is then
partitioned into

F [kn, kn+1) = [kn+ t1, kn+1+ t1) = [kn+ t1, kn+1)∪ [kn+1, kn+1+ t1),

corresponding to the intervals I0 and I1 on the circle respectively. This means
that if bn+1 = 0, we must have that tn+1 ∈ [kn + t1, kn + 1), and if bn+1 = 1,
then tn+1 ∈ [kn + 1, kn + 1 + t1). Consequently,{

bn = 0 =⇒ kn+1 = kn,

bn = 1 =⇒ kn+1 = kn + 1.

In other words, kn+1 = kn + bn+1. This in fact shows that

kn = b1 + b2 + · · ·+ bn.

Moreover, since
kn
n
≤ F n(0)

n
<
kn
n

+
1

n
,

we have that the limit lim kn/n exists and is equal to Rot(F ).
For the second part, suppose that for n < N , we have kn = k′n, so that

F n(0), F ′n(0) ∈ [kn, kn+1), and for n = N , we have the first “disagreement”
between the sequences, so that bN = 0, b′N = 1. This implies that

kN ≤ FN(0) < kN + 1 ≤ F ′N(0) < kN + 2,

and more precisely, that

kN + t1 ≤ FN(0) < kN + 1 ≤ F ′N(0) < kN + 1 + t1.

Now, considering that F and F ′ are monotone increasing, we have

FN(kN + t1) ≤ F 2N(0) < FN(kN + 1)

=⇒ FN(t1) + kN ≤ F 2N(0) < FN(0) + kN + 1 < 2(kN + 1),

so that inductively F jN(0) < j(kN + 1) for j ≥ 1. Similarly,

F ′N(kN + 1) ≤ F ′2N(0) < F ′N(kn + 1 + t1)

=⇒ F ′N(0) + kN + 1 ≤ F ′2N(0) < F ′N(t1) + kN + 1,
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so that inductively j(kN + 1) ≤ F ′jN(0). With this, we naturally have that

F jN(0)

jN
≤ kN + 1

N
≤ F ′jN(0)

jN
,

and Rot(F ) ≤ Rot(F ′).

Can every bit sequence be realized? Surely not, because the limit of kn/n
has to exist, and I don’t believe all such sequences have a limit. Moreover,
they need to be realizable so that they respect the above inequality. In a way,
the initial behavior of the bit sequence has to constrain the future behavior,
only making it more precise.

In fact, consider the following. Since kN ≤ FN(0) < kN + 1, we get

FM(kN) ≤ FM+N(0) < FM(kN + 1)

=⇒ FM(0) + kN ≤ FM+N(0) < FM(0) + kN + 1

=⇒ kM + kN ≤ FM+N(0) < kM + kN + 2,

so that
kM + kN ≤ kM+N ≤ kM + kN + 1,

and the sequence of the kN is “almost additive”. In fact, the sequence (kn +
1)n∈N, by the above inequality on the right hand side, is subadditive. This is
sufficient to show that the limit

lim
n→∞

kn + 1

n
= lim

n→∞

kn
n

exists, being defined as the rotation number of F .
This still does not answer the question of which bit sequences are realiz-

able, but gives a slightly clearer picture.

16 The Sullivan Classification of Fatou Com-

ponents

Problem (16-a. Limits of iterates). Give a sharper formulation of the defin-
ing property of the Fatou set Ĉ\J for a rational function as follows. If V is a
connected open subset of Ĉ\J , show that the set of all limits of succesive it-
erates fn|V as n→∞ is either (1) a finite set of constant maps from V into
an attracting or parabolic periodic orbit, or (2) a compact one-parameter
family of maps, consisting of all compositions Rθ ◦fk|V , with k0 ≤ k < k+p.
Here fk0 is to be some fixed iterate with values in a rotation domain belong-
ing to a cycle of rotation domains of period p, and Rθ is the rotation of this
domain through angle θ.
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Proof. If V ⊆ Ĉ \ J = F is open and connected, then there exists a unique
Fatou component U containing V . We know that all Fatou components
are preperiodic. Suppose fk(V ) is mapped into some periodic component
corresponding to an immediate basin of an attracting periodic orbit or the
immediate basin of a petal of a parabolic periodic orbit, and k0 is minimal
with this property. Then if the period is p, naturally fk0+np+r converges
locally uniformly on V to an attracting periodic point or parabolic periodic
point of the orbit as n→∞, and 0 ≤ r < p. All limits of iterates of f must
be of this form.

If fk0(V ) is mapped into some cycle of rotation domain (with irrational
rotation number α), We know that orbit nα in the circle is dense, producing
this one parameter family Rθ, and we can map into any of the components
of this cycle of rotation domains by fk, k0 ≤ k < k + p.

Problem (16-b. Counting Components). (1) If a quadratic polynomial map
has either an attracting fixed point or a parabolic fixed point of multi-
plier λ = 1, show that there is only one bounded Fatou component.

(2) If it has an attracting cycle of period 2, show that there are three
bounded components which map according to the pattern U1 ↔ U0 ←
U ′
1 and that the remaining bounded components are iterated preimages

of U ′
1 where each set f−n(U ′

1) is made up of 2n distinct components.

(3) What is the corresponding description for a cycle of attracting or
parabolic basins with period p, or for the case of a Siegel fixed point?

Proof. (1) Recall that if f is a quadratic polynomial, then ∞ is a superat-
tracting fixed point, in which the multiplicity of ∞ as a critical point
is 1. There is therefore only one other finite critical point c. If f has
an attracting fixed point or a parabolic fixed point p0, then necessarily
c is contained in the immediate basin of attraction of p0. In the case
of a parabolic fixed point, p0 is a fixed point of multiplicity 2, since
f(z) − z has at most two roots. (Another approach is to recall that a
rational map of degree d has exactly d + 1 fixed points, counted with
multiplicity.) Therefore p0 has exactly one attracting direction and one
repelling direction.

Let K = C\A(∞) be the filled Julia set, such that K is fully invariant
by the maximum modulus principle; in fact intK ⊆ F (f). If U is a
bounded Fatou component, then U ⊆ intK, and fn(U) ⊆ intK. As U
must be preperiodic, in must map onto some cycle of Fatou components,
corresponding to either a cycle of immediate basins of attraction for an
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attracting or parabolic periodic orbit, or a cycle of Siegel disks, since
Herman rings cannot occur for polynomial maps.

However, since the unique finite critical point c is already in the imme-
diate basin of p0, no other cycle of attracting or parabolic basins can
occur, nor a cycle of Sigel disks. Hence U is mapped into A(p0).
Due to the existence of the critical point c in the basin, f |A(p0) :
A(p0)→ A(p0) is a proper holomorphic map of degree 2. Hence A(p0)
must in fact be fully invariant, so that U = A(p0). So we prove that
f has exactly one bounded Fatou component A(p0) and exactly one
unbouded Fatou component A(∞).

Moreover, A(∞) is simply connected in Ĉ since K and J are connected
(as the finite critical point does not converge to ∞), so that A(p0) is
also simply connected. The Julia set is the common boundary of A(p0)
and A(∞).

(2) Now assume that there exists an attracting cycle p0, p1 of period 2.
Let Ui be the Fatou component containg pi, where we assume that
the finite critical point c ∈ U0. As the orbit of the critical point is
bounded, A(∞) is connected and simply connected in Ĉ, and K and
J are connected. This implies that each bounded Fatou component is
also simply connected, for otherwise J would be disconnected.

As c ∈ U0, the proper map f |U0 : U0 → U1 has degree 2, so that f
−1(U1)

has exactly one component, being U0. The map f : U1 → U0 has degree
1, so that f−1(U0) consists of exactly two simply connected components
U1 and U ′

1 mapping conformally isomorphically onto U0 by f .

If U is bounded Fatou component of f , then necessarily some iterate
fn(U) is mapped into U0, as by the same arguments as above it cannot
be mapped to some other attracting or parabolic cycle, or cycle of
rotation domains. Therefore if U ̸= U0, U1, then U is a component of
f−n(U ′

1). All of these components must be simply connected and be
mapped conformally isomorphically under fn to U0, so that there are
exactly 2n such components given that the degree of fn is 2n.

(3) If there is a cycle
U0 → U1 → · · · → Up−1

of attracting or parabolic basins of period p, where we may assume
that the critical point c is in U0, then the map f |U0 : U0 → U1 has
degree 2, and all the other maps f |Ui

: Ui → Ui+1 are of degree 1.
Again, all Fatou components will be simply connected in Ĉ. We have
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that the preimage of U1 is the single component U0, while each other
component Ui has exactly two simply connected preimages Ui−1 and
U ′
i−1. All other bounded Fatou components must map into some Ui,

and there are 2n components of f−n(U ′
i).

Problem (16-c. Wandering domains). Show that the transcendental map
f(z) = z + sin(2πz) has one family of wandering components {Un} with
f(Un) = Un+1 and one family {Vn} with f(Vn) = Vn−1. Describe the Fatou
set for the corresponding map of the cylinder C/Z.

Proof. Note that for each n/2 ∈ 1
2
Z, we have f(n/2) = n/2, with multiplier

f ′(n) = 1± 2π, being a repelling fixed point. If we let z = k+1/4 for k ∈ Z,
we get the orbit

· · · 7→ −k + 1

4
7→ · · · 7→ −1 + 1

4
7→ 1

4
7→ 1 +

1

4
7→ · · · 7→ k +

1

4
7→ · · ·

and analogously, for z = k + 3/4, we get

· · · ← −1 + 3

4
← 3

4
← 1 +

3

4
← 2 +

3

4
← · · · .

Note that the multiplier at each of these points is equal to 1.
The map f admits several symmetries. We have f(z + 1) = f(z) + 1,

so that f is conjugate to itself by the translation z 7→ z + 1. This shows
that integer translations are symmetries of the Fatou and Julia sets. Since
sin(2πz) = sin(2πz), we have that f(z) = f(z), and conjugation is another
symmetry. Finally, −f(−z) = f(z), so that z 7→ −z is a symmetry, and also
the reflection about the imaginary axis z 7→ −z, along with reflection over
all

We want to understand the relationship between 1/4 and the Fatou set.
For z close to 1/4,

f(z)− f(1/4) = z − 1/4 + sin(2πz)− 1,

where the difference sin(2πz)− 1 is of the order of (z − 1/4)2, since

sin(2πz) = 1− (2π)2

2
(z − 1/4)2 +

(2π)4

24
(z − 1/4)4 − · · ·

If z = x ∈ R and x is close to 1/4 but x ̸= 1/4, we get that

(x− 1/4)− (2π)2

2
(x− 1/4)2 < f(x)− f(1/4) < x− 1/4,

74



so that if x > 1/4, then the distance dn = |fn(x) − fn(1/4)| is monotone
decreasing, and if x < 1/4, the distance is monotone increasing for small
times n.

Since f(z + 1) = f(z) + 1, we have an induced holomorphic map on the
cylinder f̂ : C/Z → C/Z. For this map, 1/4 is a parabolic fixed point with
multiplier 1 and multiplicity 2, because locally

f̂(z) =
1

4
+ (z − 1/4)− (2π)2

2!
(z − 1/4)2 +

(4π)4

4!
(z − 1/4)4 − · · · ,

around 1/4 mod Z, since 3/4 ≡ 1/4 mod Z. Conjugating by a translation
z 7→ z − 1/4, we get that locally

f̂(z) = z − (2π)2

2!
z2 +

(4π)4

4!
z4 − · · ·

so that there is a unique attracting direction and an unique repelling di-
rection. These are exactly the positive and negative real axes that we have
described above, whether x > 1/4 or x < 1/4. This shows that we have an at-
tracting petal P at this fixed point, and we may lift it to the map f : C→ C.
If π−1(P) is the preimage of this petal under the projection π : C → C/Z,
we see that π−1(P) is forward invariant under f , and as its complement has
at least three points (the repelling fixed points at k/2, k ∈ Z), by normality
π−1(P) is contained in the Fatou set.

We can also consider the parabolic fixed point at 3/4 on C/Z, admiting
an attracting petal Q. In fact, one is mapped into the other by the symmetry
z 7→ 1 − z, which is the reflection about the axis Re z = 1/2 descended to
C/Z.

This lift π−1(P) will have components containing petals “adjacent” to
the points k + 1/4 for k ∈ Z, and they will be mapped to one another by f .
We must show that these components are distinct.

If the component Un containing n+1/4+ε0 for some fixed choice of ε0 > 0
small were the same as the component Un′ for n′ > n, then we may find a
smooth path connecting n+1/4+ ε0 and n

′ +1/4+ ε0 within the Fatou set.
By the symmetry of F under conjugation, we may also assume that this path
is contained in the upper half-plane H except at the endpoints. Translating
this path under the symmetry z 7→ z+1, we find a path within F connecting
(n+ 1) + 1/4 + ε0 and (n′ + 1) + 1/4 + ε0. But we must see that since both
are contained in H except at the endpoints, they must intersect. This shows
that Un = Un+1, and we have a path within F ∩ H connecting n + 1/4 + ε0
to (n+ 1) + 1/4 + ε0.

If γ is such a smooth path, then γ also connects the endpoints, but in F
intersected with the lower half-plane. Taking small neighborhoods of these
paths, we get an annulus within F containing the endpoints.
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However, this sequence of annuli between the components Un must map
by the reflection z 7→ 1− z to a sequence of annuli between the components
Vn, and they must be disjoint, which cannot happen. This reasoning implies
that each component Un is distinct, along the with the distinct components
Vn.

What more can be said about the Fatou said for C/Z, along with the
components and the symmetries described?

Problem (16-d. A Baker domain). Show that the map

f(z) = z + ez − 1

has a fully invariant Baker domain U = f−1(U). In particular, show that all
critical values belong to the half-plane Re z < 0 and that all orbits {zj} in this
half-plane satisfy limj→∞Re (zj) = −∞. Show that there is an associated
map of the cylinder C/2πiZ.

Proof. The map f has the symmetry f(z+2πi) = f(z) + 2πi, so that trans-
lation by 2πi is also a symmetry of F and J . Moreover, the map f descends
to a holomorphic map of the cylinder C/2πiZ. The critical points of f are of
the form (2k+1)πi, for k ∈ Z, so that the critical values are −2+(2k+1)πi,
having real part −2.

If Re z < 0, then |ez| = eRe z < 1, so that the real part of f(z) is

Re f(z) = Re z +Re ez − 1 < Re z + |ez| − 1 < Re z.

This means that the left half-plane P for Re z < 0 is forwards invariant
under f , that is, f(P ) ⊆ P . Moreover, it must be contained in the Fatou
set, since orbits in it omit at least three points (in particular all points with
non-negative real part). Let U be the Fatou component of f which contains
this half-plane P . Note that U ̸= C, since f has fixed points at z = 2πki
for k ∈ Z, with multipliers equal to 2, hence repelling. Therefore U is a
connected hyperbolic Riemann surface.

Note that the orbit of −1 diverges to −∞, so that by the classification
of the dynamics on a hyperbolic surface, no other orbit has an accumula-
tion point, and they in fact must follow the same orbit under the Poincaré
distance. Moreover, as for all ε > 0 such that Re z < −ε we also have
Re f(z) < Re z + e−ε − 1, where again Re f(z) < Re z < ε, we have that

Re fn(z) < Re z − n(1− e−ε),

so that Re fn(z) → −∞. We only need to prove that U is fully invariant.
Suppose that V were a component of f−1(U) not equal to U , so that V is
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contained in the open right half-plane Re z > 0. This means that for some
n ∈ N and z ∈ V , Re fn(z) < 10, say. If V were bounded, by the maximum
modulus principle of harmonic functions, The minimum of Re fn(z) on V
is attained on the boundary, so that for some z ∈ ∂V ⊆ J we would have
fn(z) ∈ U , a contradiction. Hence f−1(U) can have no bounded component.

The map f also admits the symmetry f(z) = f(z), so that the Julia and
Fatou sets are symmetric about the real axis. This implies that they are
symmetric with respect to reflections about the lines Im z = (2k + 1)πi, and
this symmetry descends to C/2πiZ.

We also see that U must contain all points of the form Im z = (2k+1)πi,
since ez = −eRe z, so that the imaginary part of z is preserved under f and
its real part is stricly decreasing by at least 1 each iteration. This all such
points eventually fall into U , and naturally there is a path connecting them
to U through the Fatou set, along this line.

In fact, if Re f(z) < 0 and z = x+ iy, then we must have that

cos y < (1− x)e−x,

where the right hand side tends to 0 as Re z → 0. The function (1 − x)e−x
has a point of global minimum at x = 2, where it is equal to −e−2. Therefore,
whenever cos y < −e−2, we have that z is mapped to the left half-plane P ;
more explicitly, There is a small constant c > 0 such that the countable
collection of horizontal strips

{z ∈ C : Im z ∈ (2kπ + π/2 + c, 2kπ + 3π/2− c)}

is contained in the f−1(P ), hence in the Fatou set. By connectedness, they
are also contained in U . We also have that each horizontal line segment

{z ∈ C : Re z ≥ 0, Im z = 2kπ, k ∈ Z}

is disjoint from U , since it consists either of the fixed point at 2kπi, which
is repelling, or points wich diverge to Re z → +∞. We can also see that
U contains the closed left half-plane Re z ≤ 0 except for the fixed points
z = 2kπi, k ∈ Z.

If V were another unbounded component of f−1(U), then necessarily it
must be unbounded in the direction of Re z → +∞, and it must be contained
in a small neighborhood of a half-strip

{z ∈ C : Re z > 0, Im z ∈ (2kπ − π/2, 2kπ + π/2), k ∈ Z}.

(I have not been able to complete the proof: One could attempt to prove
that U is dense in C.)
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17 Prime Ends and Local Connectivity

It seems as though we can describe prime ends as the inverse limit of an
inverse system much like the ends of a topological surface (or space). Given a
crosscut A in U , we have the two components Comp(U \A) = {N1, N2}, and
if A′ is another cross cut which does not intersect A, then we may assume
that N ′

1 ⊂ N1, but N
′
2 ⊃ N2. Maybe the inverse system should be of crosscut

neighborhoods.
In fact, it seems unlikely that we would be able to do so; by mimicking

an inverse limit construction, one would expect to obtain the prime ends as
some for of Cantor set or totally disconnected set. However, for D, its prime
ends coincide with ∂D = S1, a continuum.

Small comment: After theorem 17.16, the book claims that the boundary
of a simply connected set is always connected (by Problem 5-b). However,
this surely must require more restrictions of the simply connected set; con-
sider for example an infinite strip in C, which has two boundary components
as straight lines. Maybe it refers to simply connected sets in Ĉ.

We also explore (in the future) a little more a concept introduced in
Epstein’s paper Prime Ends, that of principal points (or the principal set or
a prime end). One way to possibly formalize is idea is that, for a prime end
E , we may consider all equivalent fundamental chains (Nj)j that give rise to
this prime end, and the limit set of the crosscuts Aj, since their diameters
tend to 0. (The crosscuts may not convergence to a single point, but a
subsequence of them should.) Intuitively, these principal points should also
be accumulation points of all rays converging to the prime end.

18 Polynomial Dynamics: External Rays

For the sake of repetition: for a monic polynomial f of degree d ≥ 2,
the fact that all of the bounded Fatou components U ⊆ intK(f) are simply
connected stems from the maximum modulus principle, by taking a simple
closed curve Γ in U bounding an open domain V , where we may conclude
that V ⊂ U .

Theorem 18.5 is the following:

Let f be a polynomial map with connected and locally connected Julia set.
Then every periodic point in J is repelling or parabolic. Moreover, every

cycle of Siegel disks for f contains at least one critical point on its
boundary.
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A remark on the above is that the proof in fact shows that at the critical
point c ∈ ∂∆ in the boundary of the cycle of Siegel disks, at least two distinct
rays land on it (at least in the case of a fixed Siegel disk, but extendable to
cycles of Siegel disks).

Remark on proof of Lemma 18.12: Recall that as we are not as-
suming that the Julia set is locally connected (that is, that all rays land
continuously onto J), we cannot affirm that the set X ⊂ R/Z of angles
whose rays land at z0 is compact.

Despite this, since we are assuming that at least one periodic ray lands at
z0, we have that z0 is periodic with period a divisor of the period of the ray.
By first assuming that the ray is fixed, the set X is mapped to itself n 7→ nt
in R/Z, injectively as z0 is not a critical point, and surjectively because of
lemma 18.1.

More generally, we have:

Proposition 18.1. Suppose f is a polynomial map of degree n for which J
is connected, and z0 ∈ J is not a critical point. Let Xz0 be the set of rays
landing at z0, corresponding to a set of angles in R/Z. Then the map t 7→ nt
on R/Z gives rise to a bijection Xz0 → Xf(z0).

Proof. For a sufficiently small neighborhood N of z0, we have a conformal
isomorphism f |N : N → f(N), which maps a ray Rt to Rnt, and if Rt lands
at z0, then Rnt lands at f(z0). (Restatement of Lemma 18.1.) If t and t′ are
such that nt ≡ nt′ mod Z, then the rays Rt and Rt′ map to the same ray in
f(N), contradicting injectiveness of f |N . Hence Xz0 → Xf(z0) is injective.

By considering the map f |−1
N , we also have surjectiveness; if s is such that

Rs lands at f(z0), then it is the image of some ray Rt for which nt = s.
There are in principle n possible preimages of s under the map t 7→ nt, but
due to injectiveness, there must be a single one such t such that Rt lands at
z0.

Corollary 18.2. Under the previous hypotheses, but assuming now that z0
is a critical point of local degree m ≥ 2, the map Xz0 → Xf(z0) is surjective
and m to 1.

How do we know the map must preserve the cyclic order? Is this just a
consequence of the t 7→ nt map on the circle? Because the map may wind
around the circle more than once. This is probably basic.

Note also that possibly Xz0 = ∅, and theorem 18.12 deals with the case
of Xz0 containing a periodic ray. It follows that z0 is periodic, Xz0 is finite
and the rays all share the same period.
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Remarks on the proof of Theorem 18.11 (Repelling and Parabolic
Points are Landing Points):

Assume f(0) = 0 is repelling or parabolic, and let E be the set of all
backwards orbits z = (z0, z1, z2, . . .), that is,

· · · 7→ z2 7→ z1 7→ z1 7→ z0

such that it converges non-trivially to 0 in backwards time. More precisely,
the book claims that this means limk→∞ zk = 0 and zk ̸= 0 for k large; but
does this mean that for all k large, we have zk ̸= 0, or that for arbitrarily
large k we will find some zk ̸= 0?

The former necessarily implies the latter, but they are in fact equivalent.
Because we may take a sufficiently small neighborhood N of 0 such that,
for all k ≥ k0, we always have zk ∈ N , so that in the repelling case there
is a unique preimage of zk contained in N , due to the local conjugation
to w 7→ λw, and the sequence will be non-zero for all bigger k; and in the
parabolic case, the same happens, as the backwards sequence must fall inside
a repelling petal and converge also non-trivially to 0. (This space E will also
include all homoclinic orbits of 0 as well.)

According to the third edition, we may specify a topology for E. Consider
neighborhoods V0 and V1 of 0 such that f maps f |V0 : V0 → V1 as a conformal
isomorphism, with inverse g : V1 → V0. (In the repelling case, we may
stipulate that V0 ⊂ V1.)

Let
Ek := {z = (z0, z1, . . .) | zj ∈ V0 ∩ V1 \ {0}, ∀j ≥ k},

where Ek is a subset of the set of all backwards orbits. Naturally

E0 ⊂ E1 ⊂ E2 ⊂ · · · ,

and if z ∈ Ek, then z ∈ E. This is because by our possible choice of V0 the
sequence will fall within an attracting neighborhood of attracting petal for
g, so that it will convergence non-trivially to 0. And in fact, if z ∈ E, then
for some k we must have that z ∈ Ek due to the convergence. This implies
that E is the union of the ascending chain of sets Ek. (Can we imbue E with
a direct limit topology?)

Now consider the projection πk : Ek → V0, z 7→ zk. This is an injection,
given that we can recover the other coordinates of z from zk; we have that
zj = fk−j(zk) for j ≤ k, and zj = gj−k(zk) for j > k, given that zj ∈
V0 ∩ V1 \ {0} for all j ≥ k. In fact, these other coordinates are holomorphic
with respect to zk. Moreover, the image of this projection is open in C;
if ẑ is sufficiently close to zk, so that in the repelling case ẑ is still in the
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neighborhood V0∩V1\{0} which is contracting for g, or in the same repelling
petal as zk, we may produce

(fk(ẑ), fk−1(ẑ), . . . , f(ẑ), ẑ, g(ẑ), . . . , gj(ẑ), . . .) ∈ Ek.

In the repelling case, πk : Ek → V0 \ {0} will be a bijection, and in the
parabolic case, Ek will be mapped into the disjoint union of the repelling
petals for 0 bijectively.

We then give each Ek a topology such that πk is a homeomorphism into
V0, and give E the direct limit topology. Recall that ψ : E → Y is then
continuous if and only if the restrictions ψ|Ek

: Ek → Y are continuous.
Each Ek will also be a Riemann surface, and hence E will acquire a canonical
conformal structure from the direct limit. Moreover, the maps πk : E → C
will be all holomorphic, since for z ∈ E, for some arbitrarily large j > k we
have z ∈ Ej, and

πk(z) = f j−k(πj(z)),

where f j−k and πj are holomorphic on their domains.
We now consider the shift map

(z0, z1, z2, . . .) 7→ (z1, z2, z3, . . .)

which maps Ek into Ek−1 injectively, since we may recover z0 from the other
coordinates. It will also map E0 into E0. This means that σ : E → E is an
injection. It has the inverse f :

(z0, z1, z2, . . .) 7→ (f(z0), f(z1), f(z2), . . .) = (f(z0), z0, z1, . . .)

such that
f(πk(z)) = πk(f(z)),

and will be a conformal isomorphism from E to E. Here f maps Ek to Ek+1.
In the repelling case, Königs linearization for g will give us that E is

conformally isomorphic to C \ {0} through the map

k(z) = lim
k→∞

λkzk.

Moreover, f : E → E is conjugate to z 7→ λz in C \ {0}. Similarly, in the
parabolic case, assuming λ = 1 by taking iterates of f , each component EP
corresponding to a repelling petal will be conformally isomorphic to C due
to the Fatou coordinate αP : P → C, where f will be conjugate to z 7→ z+1.

If K̃ is the set of z ∈ E such that all zk belong to the filled Julia set,
this will be equal to

⋂
k≥0 π

−1
k (K) = π−1

0 (K), which is therefore closed in E.

Moreover, K̃ will be totally invariant in E under f .
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The philosophy behind both of these constructions seems to be that we
can “blow up” the small scale repelling dynamics near the fixed point to
a global dynamics on Ĉ, and have it be conjugate to our standard models.
With this, we also blow up the “local Julia set” at the repelling fixed point to
this global dynamics. In fact, it seems these constructions can be reproduced
for any repelling or parabolic fixed point for all f : S → S holomorphic.

What do the homoclinic orbits look like in E? We can consider the
preimage π−1

0 (0) as a closed set, or the union of π−1
k (0) for all k. In fact

π−1
0 (0) ⊃ π−1

1 (0) ⊃ π−1
2 (0) ⊃ · · · ⊃ π−1

k (0) ⊃ · · ·

Another small detail in the proof of Lemma 18.14: how do we know that
the map π0 : U0 → C \ K is surjective? Given ẑ ∈ C \ K, we know that
the set of preimages of ẑ accumulates at J = ∂A(∞), so that some iterated
preimage falls within the described neighborhoods of the repelling fixed point
0 ∈ J . This shows that π0 : E \ K̃ → C \K is surjective and conformal, but
why is it surjective on each component? The proof in the book (specially

second edition) shows that π0 : E \ K̃ → C \ K is a holomorphic covering

map. If U0 is a component of E \ K̃, then π0|U0 : E \ K̃ → C \K will also
be a covering map. Otherwise, if ẑ ∈ ∂π0(U0) and N is a sufficiently small

evenly covered neighborhood of ẑ, let Ñi be the lifts of N . N will contain
points in π0(U0), so by taking z ∈ U0 such that π0(z) ∈ N , we consider the

lift Ñi that contains z. But since N also contains points not in π0(U0), Ñi

will contain points in (E \K̃)\U0. But as Ñi is connected, it must have been
fully contained in U0, a contradiction.

Recall that each component U of E \ K̃ is invariant under f . In the
repelling case, by the conformal isomorphism E ∼= C\{0} where f is conjugate
to z 7→ λz, for every punctured disk D∗

r ⊂ C\{0}, every component of E \ K̃
will intersect D∗

r.

19 Hyperbolic and Subhyperbolic Maps

Remark on the proof of 19.1: Given the neighborhood V ′ of J which
is conformally hyperbolic and on which the expanding factor of f is ≥ k, it
is claimed that there exists an ε > 0 such that both f−1(Nε(J)) ⊂ V ′, and
for each z ∈ Nε(J), there exists at least one minimal µ-geodesic in V ′ joining
z to J .

The first claim follows from from compactness of J and that inverse
branches of f are defined on a neighborhood of J . Since J must contain
no critical points, it also cannot contain any critical values. Hence for all
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w ∈ J there exists εw > 0 such that there exists d inverse branches of f−1

defined on Nεw(w), giving rise to conformal isomorphisms onto neighbor-
hoods of the preimages of w; by continuity of these inverse branches, we may
assume that each of these images is contained in V ′, possibly decreasing εw.
By compactness, we may take an uniform ε > 0.

For the second claim, each point w ∈ J will have a well defined injectivity
radius rw > 0 such that the exponential map is a diffeomorphism from a
neighborhood Brw(0w) of 0w ∈ TwV ′ onto a normal neighborhood of w, and
by compactness, we may take an uniform radius r > 0. We may also take
totally normal convex neighborhoods, where distances between points are
realized by geodesics within the neighborhood.

Moreover, as a consequence of the expanding behavior on the neighbor-
hood, we in fact have that

f−1(Nε(J)) ⊂ Nε(J),

as claimed afterwards, given that for z ∈ f−1(Nε(J)),

d(z, J) ≤ d(f(z), J)/k < ε/k.

Later in the proof, it is claimed that if ẑ is an accumulation point for an
orbit in the Fatou set must be in the Fatou set, and it cannot be a rotation
domain, following Theorem 11.17 and Lemma 15.7. Theorem 11.17 states
that the boundary of any Siegel disk or cycle of Siegel disks is contained in
the closure P of the postcritical set. If f had a rotation domain in the first
place, by the above, the critical point accumulating on its boundary would
have to be contained in the Julia set, which is excluded by the dynamically
hyperbolic neighborhood V ′ of J .

What is the radial derivative?

d logF (w)

d logw
= w

F ′(w)

F (w)

Maybe one way to interpret this is via the following. If w = reiθ, so that
z = logw = log r + iθ, we may consider

d log f(ez)

dz
=

1

f(ez)
f ′(ez)ez,

being just the complex derivative of g(z) = log f(ez). But this will coincide
with the first partial derivative ∂xg of g; this is varying the real part of
z, that is, the radial part of w (up to a logarithm). The importance of
g(z) = log f(ez) is that (locally) it is a lifting of f via the exponential map.
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Remark on the proof of Theorem 19.2: Connectedness of the Julia
set plays the following role in the proof: As J = X ⊆ S2 is a compact
connected subset, every component of its complement is open and simply
connected. This means that we can indeed apply Lemma 19.3.

Problem (19-a. The non-wandering set). By definition, the non-wandering
set for a continuous map f : X → X is the closed subset Ω ⊂ X consisting
of all x ∈ X such that for every neighborhood U of x there exists an integer
k > 0 such that U ∩ fk(U) ̸= ∅. Show that the non-wandering set for a
rational f is the disjoint union of its Julia set, its rotation domains (if any),
and its set of attracting periodic points.

Proof. The non-wandering set for a general continuous map is closed from
the definition, since the complement of the non-wandering set has an “open”
definition. Naturally the Julia set J is contained in the non-wandering set,
since the set of all iterated preimages of a point z ∈ J is dense; and also
the set of all attracting periodic orbits. If a point z belongs to a rotation
domain, since irrational rotations are dense in the circle, this implies that z
is non-wandering.

Now suppose z is in the Fatou set, but is neither in a rotation domain
nor it is an attracting periodic point. If the Fatou component U to which z
belongs is not periodic, then z is wandering. If U is periodic, then it either
is the immedaite basin of an attracting cycle, or of a parabolic cycle. It is
sufficient to consider the case of a fixed point. Since small neighborhoods of
z within U converge uniformly to either the attracting fixed point of or to
the parabolic fixed point, z is wandering.

Problem (19-b. Axiom A). In the literature on smooth dynamical system
a 1-dimensional map is said to satisfy Smale’s Axiom A if and only if the
following two conditions are satisfied:

(1) The non-wandering set Ω splits as the union of a closed subset Ω+ on
which f is infinitesimally expanding with respect to a suitable Rieman-
nian metric, and a closed subset Ω− on which f is contracting.

(2) Periodic points are everywhere dense in Ω.

Show that a rational map is hyperbolic if and only if it satisfies Axiom A.

Proof. If f is hyperbolic, then it cannot admit rotation domains, so Ω is the
disjoint union of the Julia set with the attracting periodic cycles. Naturally
f is expanding on a neighborhood of J , contracting on the attracting cycles,
and periodic points are everywhere dense in Ω, so that f satisfies Axiom A.
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Conversely, if f satisfies Axiom A, it cannot have rotation domains by
the requirement of density of periodic points. Moreover, the splitting of Ω
must be with respect to the Julia set J and the attracting cycles, giving rise
to hyperbolicity on a neighborhood of J .

Problem (19-d. An orbifold example). (1) Show that the Julia set for the
rational map z 7→ (1− 2/z)2n is the entire Riemann sphere.

(2) For n > 1, show that the orbifold metric in this example is hyperbolic.

(3) For n = 1, show it is euclidean.

Proof. We compute the critical points of f(z) = (1 − 2/z)2n and its local
degrees. Note that

f ′(z) = 2n

(
1− 2

z

)2n−1
2

z2
,

so that z = 2 is a finite critical point for f , where f(2) = 0. Moreover,

f ′(z)

f(z)
=

4n

z(z − 2)
,

and

ord(f, 2) =
1

2πi

∫
γ

f ′

f
dz =

4n

2πi

∫
γ

1

2(z − 2)
− 1

2z
dz =

2n

2πi

∫
γ

1

z − 2
dz = 2n,

where γ is a small loop around 2. Thefore the local degree of f at the critical
point z = 2 is 2n− 1. Note that the degree of f is 2n, so that it has 4n− 2
critical points counted with multiplicity.

In order to take account of the other critical points, note that f−1(∞) =
{0} and f(∞) = 1. This means that 0 is the other critical point, with
multiplicity 2n − 1, and these are all critical points. Since we have the
preperiodic orbit

2 7→ 0 7→ ∞ 7→ 1 7→ 1 7→ 1 7→ · · · ,

and 1 is a repelling fixed point since

f ′(1) = 2n(−1)2n−1 2

12
= −4n.

Due to the classification of Fatou components and their relationship with
the postcritical set, f can have no rotation domains, no parabolic basins, no
Cremer points and no attracting periodic orbits. Hence J = Ĉ.
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In order to compute the orbifold associated to f , we see that S = Ĉ, since
f has no attracting periodic orbits, and we recall that the following condition
for (S, ν) must be satisfied:

For all z ∈ S, ν(f(z)) must be a multiple of of n(f, z)ν(z).

Also, the ramification indexes are not 1 only at the postcritical points.
The minimal ν that satisfies this condition is then

ν(2) = 1, ν(0) = 2n, ν(∞) = 4n2, ν(1) = 4n2.

Hence

χ(S, ν) = χ(Ĉ) +
1

2n
+

1

4n2
+

1

4n2
− 3 =

1

2n
+

1

2n2
− 1.

For n = 1, we see that the orbifold is euclidean, and for n > 1 the
orbifold is hyperbolic, following as in the proof of 19.6. f will be expanding
with respect to the hyperbolic orbifold metric on the entire sphere.

As in the proof of 19.9, if n = 1 with euclidean orbifold, we have that
f : (S, ν)→ (S, ν) is a 2-fold orbifold covering,

Problem (19-e. Expanding maps). A map from a metric space to itself is
said to be expansive on a subset X if there exists ε > 0 so that, for any two
points x ̸= y whose orbits remain in X forever, there exists some k ≥ 0 so
that fk(x) and fk(y) have distance greater than ε. Using Sullivan’s results,
show that a rational map is expansive on some neighborhood of its Julia set
if and only if it is hyperbolic. (However, a map with a parabolic fixed point
may be expansive on the Julia set itself.)

Proof. Suppose that f is hyperbolic, and V ′ and Nε(J) are sets as in the
proof of Theorem 19.1. Suppose x and y are points in Nε(J) whose orbits
stay in Nε(J) forever; necessarily then x, y ∈ J . If we take ε > 0 so small
that if d(z, w) < 2ε implies that there exists at least one minimal geodesic
connecting z and w for arbitrary z, w ∈ Nε(J), then if we assume by contra-
diction that d(fn(x), fn(y)) ≤ ε for all n, we see that

d(x, y) ≤ d(fn(x), fn(y))/kn < ε/kn,

where k > 1 is the expanding factor on V ′, by pulling back the geodesic
connecting fn(x) and fn(y) by fn. But this would imply that d(x, y) → 0,
so that x = y, a contradiction.

Now assume that f is expansive on some neighborhood V of the Julia set.
We see that f cannot admit rotation domains. Otherwise, if U is a rotation
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domain and ϕ : U → D or Ar is a conformal isomorphism to the open disk
or an open annulus conjugating f to an irrational rotation, this isomorphism
will be a uniformly continuous homeomorphism on compact sets of U , and
in particular on the foliated orbit closures of f in U . Hence the distortion of
distances is bounded above and below in a controlled manner.

More precisely, suppose x, y ∈ U∩V belong to the same orbit leaf, so that
d(ϕ(x), ϕ(y)) < δ in the usual euclidean distance, and d(ϕ(fn(x)), ϕ(fn(y))) <
δ. Then d(fn(x), fn(y)) < ε′ for all n, contradicting expansiveness, for a suf-
ficiently small δ.

If x ∈ V \ J , then a small neighborhood of x (or more precisely, a subse-
quence of iterates) converges uniformly to an attracting or parabolic cycle.
Suppose it converges to an attracting cycle (we may consider the case of a
fixed point p). If x is to have its orbit contained in V , then p ∈ V . But
for a sufficiently big k, the two points fk(x) and fk+1(x), forming a Cauchy
sequence, will contradict the hypothesis of expansiveness.

Similarly, if p is a parabolic fixed point, since p ∈ J ⊂ V , we similarly have
a contradiction with expansiveness by considering a small enough attracting
petal for p. This implies that if x ∈ V is to have its orbit contained in V ,
then x ∈ J . This also implies that for f to be expansive on a neighborhood
of J , there can also be no parabolic cycles.

Using Theorem 19.1, in order to show that f must be hyperbolic, we only
need to show that J cannot contain a critical point. But having a critical
point would contradict expansiveness on a neighborhood of it in J (how
so?).

Problem (19-f. Locally connected sets in the 2-sphere). Give a complete
characterization of compact locally connected subsets of the 2-sphere as fol-
lows.

(1) Prove the following theorem of Torhorst: If X ⊂ S2 is compact and lo-
cally connected, then the boundary of every complementary component
must be locally connected.

(2) Furthermore, prove that: If there are infinitely many complementary
components, then their diameters tend to zero.

(3) Now using Lemma 19.5, conclude that these two conditions are neces-
sary and sufficient for local connectivity.

Proof. (1) IfX is locally connected, then it must have at most finitely many
connected components. Otherwise we could find a sequence of points
xn ∈ X belonging to distinct components accumulating at x ∈ X. This
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contradicts local connectedness at x, since any small neighborhood of
x in X is disconnected.

We may therefore separate these components of X by a positive dis-
tance, and by cutting out neighborhoods of these components in the
sphere, reduce to the case of X connected. This also implies that any
connected component U of S2 \X is open and simply connected, and
each boundary ∂U is connected.

We therefore have a conformal isomorphism ϕ : D→ U , which extends
to the boundary ϕ : D → U if and only if ∂U is locally connected, if
and only if S2 \ U is locally connected.

Let x ∈ ∂U , and assume that ∂U is not locally connected at x. That is,
all sufficiently small neighborhoods of x (within ∂U) are disconnected.

(2) Let (xn)n be a sequence of points such that xn ∈ ∂Un, where the Un
are distinct components of S2 \ X. By taking subsequences, we may
assume that xn → x. As the connected components of S2 \X are open,
we must have that x ∈ X.

As X is locally connected at x, for every ε > 0, we may find an open
neighborhood N of x in S2 so that N ∩X is connected and diam(N ∩
X) < ε. We know that for all n ≥ n0, we have xn ∈ N , so that
∂Un ∩N ̸= ∅, and consequently Un ∩N ̸= ∅.

(incomplete; have not had much progress. The picture of item (2) should
be clear, and the proof showuld follow from local connectedness at the
points.)

(One possible idea of proof for item 1 is to show that ∂U must be a retract
of X; must this seems too strong.)

Appendix A: Theorems from Classical Analy-

sis

I am slightly confused as to how exactly we are taking the branches of the
square root in the proof of Lemma A.6. We have a conformal isomorphism
ψ : D → U mapping 0 7→ 0 and ψ′(0) = 1 in the η-plane (ψ is schlicht).
We also have the map g(w) = 1/w2, mapping Ĉ \ D onto D in a two to one
covering branched over ∞.

It may be easier at first to consider just disks and forget about infinity.
Let f : D→ D be the double branched cover f(w) = w2, so that we have the
composition ψ◦f : D→ U as a double branched cover. The square root map
f(z) = z2 actualy double covers the whole of C, so that we may consider the
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branched cover f |f−1(U) : f
−1(U)→ U , which contains a neighborhood of U .

we then have the diagram

D
f
��

f−1(U)

f
��

D ψ
// U

where the map ψ ◦ f : D → U will lift to an isomorphism ψ̃ : D → f−1(U).
(This can maybe be see first for the unbranched covers D \ {0} → D \ {0}
and f−1(U) \ {0} → U \ {0}, and then filling in the punctures at 0.) By
the coordinate change 1/z, we obtain the desired maps on a neighborhood
of infinity on the double covers.

Note that the argument above can be readily generalized to fn(z) = zn

for n ≥ 1. Does this gives us more inequalities?

Problem (A-1. Area of the filled Julia set). Consider the polynomial map
fc(z) = z2+c. Let w = ϕ̂(z) be the associated Böttcher map mear infinity,and
let z = ψ(w) be the inverse map.

(1) In analogy with the equation (9:5), show that ψ satisfies the identity

ψ(w2) = ψ(w)2 + c,

and conclude that ψ has Laurent series of the form

ψ(w) = w

(
1 +

p1(c)

w2
+
p2(c)

w4
+
p3(c)

w6
+ · · ·

)
where each pk(c) is a polynomial of degree k with rational coefficients.

(2) Let Kc be the filled Julia set for fc. Show that the area of Kc is upper
semicontinuous as a function of c.

(3) If Kc is connected, or in other words if c belongs to the Mandelbrot
set, show by Lemma A.4 that its area is given by the formula

A(Kc) = π(1− |p1(c)|2 − 3|p2(c)|2 − 5|p3(c)|2 − · · · ).

(4) On the other hand, show that the previous equation breaks down when
Kc is not connected. In fact, the left side is zero but the right side is
−∞. Show that the sum

|p1(c)|2 + |p2(c)|2 + 5|p3(c)|3 + · · ·
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is infinite. In fact, when Kc is not connected, show that ψ cannot be
extended as a holomorphic function over all of C \ Kc, and conclude
that the sequence of coefficients p1(c), p2(c), . . . must be unbounded.
The area is zero in this case, since Kc coincides with the Julia set and
since fc is hyperbolic.

Proof. Recall that on a neighborhood of a superattracting fixed point, the
Böttcher map conjugates the function to the n-th power map w 7→ wn. This
conjugation will be preserved by considering the superattracting fixed point
at ∞ for a polynomial, conjugating it to the map w 7→ wd where d is the
degree, outside a large disk. As fc is monic, we have that ψ, mapping a
neighborhood of infinity on the C \ D plane to a neighborhood of infinity in
the A(∞) = C \Kc plane, will be of the form

ψ(w) = w + b0 +
b−1

w
+
b−2

w2
+ · · ·

so that ψ(w) ∼ w as w →∞, and satisfies

ψ(w2) = ψ(w)2 + c.

Also recall that the local inverse to the Böttcher map ψ extends to a maximal
disk C \ Dr, r ≥ 1, and r = 1 if and only if ϕ̂ extends to a conformal
isomorphism ϕ̂ : C \ K → C \ D, if and only if A(∞) contains no critical
points, if and only if Kc is connected.

We have that

ψ(w2) = w2 + b0 +
b−1

w2
+
b−2

w4
+
b−3

w6
+ · · ·

and

c+ ψ(w)2 = c+

(∑
n≤1

bnw
n

)2

= c+
∑
m≤2

( ∑
k+l=m

bkbl

)
wm

which becomes

ψ(w)2 + c = w2 + 2b0w + (b20 + 2b−1 + c) + (2b−2 + 2b0b−1)
1

w
+ · · · .

We conclude that b0 = 0, b−1 = −c/2, and b2 = 0. In general, we have
the recursive relations

bm =
∑

k+l=2m

bkbl = b1b2m−1 + b0b2m + b−1b2m+1 + · · ·+ b2m−1b1

90



for m ≤ 0, except for m = 0, and

0 =
∑

k+l=2m+1

bkbl = b1b2m + b0b2m+1 + b−1b2m+2 + · · ·+ b2mb1.

for m ≤ 0. (Note that the solutions k+ l = 2m and l+k = 2m are distinct in
the sum for k and l distinct.) The second set of relations imply, by induction,
that form even, bm = 0. From the first set of relations, and given that b1 = 1,
b−1 = −c/2 and b2m = 0, we have that

bm = 2b1b2m−1 + 2b0b2m + 2b−1b2m+1 + · · ·+ 2bm+1bm−1 + b2m.

This gives us

b2m−1 =
bm − b2m

2
− (b0b2m + b−1b2m+1 + · · ·+ bm+1bm−1).

As pk(c) = b−2k+1, we get that b−1 = p1(c) = −c/2, and

b−3 = p2(c) =
b−1 − b2−1

2
− b0b−2 =

c2

8
− c

4
,

b−5 = p3(c) =
b−2 − b2−2

2
− (b0b−4 + b−1b−3) =

c3

16
− c2

8
.

It is straightforward to conclude by induction that pk(c) is indeed a ra-
tional polynomail of degree k with rational coefficients.

Recall that a function f : X → R is upper-semicontinuous at a point
x0 if lim supx→x0 f(x) ≤ f(x0). Equivalently, for all y > f(x0), there is a
neighborhood U of x0 such that f(x) < y for all x ∈ U . Moreover, f is upper
semicontinuous if for all y ∈ R, the set f−1(−∞, y) is open.

If c ∈ C \M , then A(c) = 0 (why? hyperbolicity?), and this is an open
set. If c ∈M , then Kc is connected, and we have the conformal isomorphism
ψ : C \D→ C \K. Lemma A.4 implies that the area A(c) = A(Kc) is given
by

π − π
∞∑
k=1

(2k − 1)|pk(c)|2.

Suppose that gk : K → [0,+∞) is a sequence of non-negative continuous
functions on a compact Hausdorff set K, and let g(x) := supk≥0 gk(x). We
show that g is lower semicontinuous. For y ∈ R, note that g(x) > y if and
only if there exists some k such that gk(x) > y, which means that

g−1(y,+∞) =
⋃
k∈N

g−1
k (y,+∞).
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More generally, the supremum of a sequence of lower semicontinuous func-
tions is lower semicontinuous, and the infimum of a sequence of upper semi-
continuous functions is upper semicontinuous.

As π −A(c) is given by a series of non-negative terms, it can be realized
as a supremum of the partial sums of the polynomials, so that it will be
lower semicontinuous. This concludes that A(c) is upper semicontinuous for
c ∈M , and this glues with the result for c /∈M .

If c ∈M , so that Kc is connected, by the lemma A.4 we immediately get
that

A(Kc) = π(1− |p1(c)|2 − 3|p2(c)|2 − 5|p2(c)|2 − · · · ).

On the other hand, if Kc is not connected, we know that A(Kc) = 0
(by hyperbolicity?), and that the local inverse to the Böttcher map ψ has
a maximal extension to C \ Dr, where r > 1. This means that the Laurent
series

ψ(w) = w

(
1 +

p1(c)

w2
+
p2(c)

w4
+
p3(c)

w6
+ · · ·

)
diverges for |w| < r. Letting ζ = 1/w, we have that the power series

1 + p1(c)ζ
2 + p2(c)ζ

4 + p3(c)ζ
6 + · · ·

has radius of convergence R = 1/r. Hence

R =
1

lim sup 2n
√
|pn(c)|

=⇒ r = lim sup 2n
√
|pn(c)|,

so that for all ε > 0, there exists infinitely many n for which

2n
√
|pn(c)| ≥ r − ε =⇒ |pn(c)| ≥ (r − ε)2n,

and by taking ε < r − 1, we get that the sequence of coefficients pn(c) is
unbounded. This concludes that the formula on the right hand side of the
area A(Kc) diverges to −∞ for Kc not connected.

Appendix B: Length-Area Modulus Inequali-

ties

We recall the the definition of the module of a quadrilateral. If Ω is a Jor-
dan domain with z1, z2, z3, z4 ∈ ∂Ω in cyclic order, then Q = Q(z1, z2, z3, z4)
is a quadrilateral. One possible way to define its module is as follows. Let Γ
be the family of (locally rectifiable) arcs joining the sides (z1, z2) and (z3, z4)
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(the “a-sides”), and let P be the family of conformal metrics ρ : U → R≥0

whose area A(ρ) :=
∫∫

Q
ρ2dxdy is ̸= 0,∞. If Lρ(γ) =

∫
γ
ρ(z)|dz|, then

M(Q) =
a

b
= inf

ρ∈P

Aρ(Q)

(infγ∈Γ Lρ(γ))
2 ,

where Q is conformally isomorphic to a rectangle [0, a] × [0, b] mapping the
a-sides to a-sides, and b-sides to b-sides. This is proved via the same length-
area estimates (using Cauchy-Schwarz) as in the appendix.

Now, if Γ is any family of (locally rectifiable) paths in a Riemann surface
S, and P is the family of (locally integrable) conformal metrics on S whose
area is Aρ(S) ̸= 0,∞ (where locally ρ = ρ(z)|dz|, we define the extremal
length of Γ as

L(Γ) = sup
ρ∈P

(infγ∈Γ Lρ(γ))
2

Aρ(S)
= sup

ρ∈P

(
infγ∈Γ

∫
γ
ρ(z)|dz|

)2∫∫
S
ρ2

.

Note that the module of a quadrilateral is the inverse of the extremal
length of the paths connecting the a-sides, but is equal to the extremal length
of the paths connecting the b-sides.

Most of the results of the chapter consists of finding curves satisfying the
inequality with respect to the modulus of a quadrilateral of extremal length
of curves, specially in comparison with the euclidean metric.

Problem (B-4. Branner-Hubbard criterion). Let K1 ⊃ K2 ⊃ K3 ⊃ · · · be
compact conneted subsets of C with each Kn+1 contained in the interior of
Kn. Suppose further that the interior intKn is simply connected, so that
each difference An intKn \Kn+1 is an annulus.

(1) If
∑∞

n=1 mod (An) is infinite, show that the intersection
⋂
Kn reduces

to a single point.

(2) Show that the converse statement is false: this intersection may reduce
to a single point even though

∑∞
n=1 mod (An) <∞. (As a first step,

you would consider the open unit disk D and a closed disk D′ of radius
0 < r < 1 centered at 1− r − ε, showing that mod (D \ D′) tends to
0 as ε→ 0.)

Proof. We have previously proved that the intersectionK =
⋂
Kn is nonempty,

compact and connected. If we only assume that the interiors intKn are sim-
ply conneted, this does not give us that intK is simply connected; consider
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for example the filled Julia set for f(z) = z2−1, whose interior has countably
many components. Can we prove that K is simply connected?

Consider the annulus Bn =
⋃n
i=1Ai = intK1 \Kn+1, so that the Bn form

an ascending chain of annuli such that mod (Bn)→∞. By Corollary B.8,
we have

4 diam(Kn+1)
2 ≤ Area(intK1)

mod (Bn)
→ 0.

This implies that K must have diameter 0, and consists of a single point.
(Honestly, I don’t want to prove the second part right now.)

Can we prove that K is simply connected? Path connected? Locally
connected? Or that B =

⋃∞
i=1Ai is a topological annulus? I think B being

a topological annulus is by virtue of K being connected.
Naturally K is not necessarily locally connected, otherwise MLC would

have already been solved. I am also willing to assume that K is not neces-
sarily path connected.

Orsay Notes: If K is locally connected, then it will be arc-connected.

Appendix E: Branched Coverings and Orbifolds

Recall that for a general non-constant holomorphic map f : S → T , for
ẑ ∈ S, we may find charts around ẑ and f(ẑ) such that f is locally of the
form z 7→ zd, where d is the local degree of f at ẑ and does not depend on
the choice of charts. ẑ is a critical point/branch point and f(ẑ) is a critical
value/branch value if d > 1. Hence f is a local homeomorphism outside of
the critical points. Naturally the set of critical points is closed and discrete;
however, it does not imply that the set of critical values is closed and discrete.
This will be the case, however, if f is proper.

We already know several properties of non-constant proper holomorphic
maps, most notably that they have a well defined branching number, that
is, the number of elements in a generic fiber, so that the map will be an
n-sheeted holomorphic covering map (Forster).

A holomorphic map p : S → T is a branched covering map (BCM), in
Milnor’s definition, if every point w of T has a connected neighborhood W
such that, for each component U of p−1(W ), the map p|U : U → W is proper
(and in particular surjective). This is more general than requiring that p be
a (holomorphic) covering map, where we require that p|U : U → W be a
conformal isomorphism, and more general than a usual proper holomorphic
map.
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For usual covering maps, all points in the domain must have local degree
equal to 1, whereas in a branched covering, the degree can be≥ 1. A standard
example is z 7→ zd in D.

Branched covering maps will be surjective, but may not themselves be
proper; one example is the exponential map exp : C → C∗, where it is
infinity to one.

If w ∈ S and W is a connected neighborhood of w such that the property
is satisfied (we will call W a BCM-neighborhood of w), is it the case that for
another open connected set W ′ ⊂ W containing w we have that W ′ satisfies
the property?

Proposition 19.1. Let p : S → T be a BCM and, for w ∈ T , W be a BCM-
neighborhood of w. Then for all open connected neighborhoods W ′ ⊂ W of
w, W ′ is a BCM-neighborhood of w.

V

V ′

wK

Uα

U ′
β

p−1
α (K)

Proof. If p−1(W ) =
⊔
Uα and p−1(W ′) =

⊔
U ′
β, for all β there is a unique

α such that U ′
β ⊆ Uα. In order to show that p|U ′

β
: U ′

β → W ′ is proper, let

K ⊆ W ′ be compact. We prove that p−1
α (K)∩U ′

β is compact. Consider A an

open neighborhood of K such that A ⊂ W ′, which always exists since T is a
normal Hausdorff space, and let (zn)n be a sequence in p−1

α (K) ∩ U ′
β. Since

p−1
α (K) is compact, there exists a subsequence znk

→ z ∈ p−1
α (K). Then

p(znk
) → p(z) ∈ K. If z /∈ U ′

β, then z ∈ ∂U ′
β. We show that p(z) ∈ ∂W ′.

Since p(znk
) ∈ W ′, we have p(z) ∈ W ′. If it were the case that p(z) ∈ W ′,

then the set {p(z), p(znk
)} would be compact in W ′, and its pre-image would

be a compact set in U ′
β. But evidently (znk

) would be a sequence that has
no accumulation point in U ′

β. So we have that p(z) ∈ ∂W ′. (This is part of a
more general argument that for proper maps, boundaries map to boundaries
in a specific sense.)

However, A is disjoint from ∂W ′, and p(z) ∈ A. This is a contradiction,
hence we have that z ∈ U ′

β, and the map pβ : U ′
β → W ′ is proper.
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Since, for general non-constant holomorphic maps, the set of critical val-
ues/ramification points is closed and discrete, given a BCM p : S → T and a
point w ∈ T , we may take a BCM-neighborhoodW of w on which w is possi-
bly the only ramification point of p. We may also take W to be conformally
isomorphic to the unit disk D.

If Uα are the connected components of p−1(W ), p|Uα : Uα → W is proper,
holomorphic and non-constant, and it is a dw,α-sheeted covering of W , possi-
bly ramified only at w, where dw,α is a positive integer depending on the point
w and the component Uα of p−1(W ). Then pα : Uα \p−1(w)→ W \{w} ∼= D∗

is a proper covering map.
But we know (Forster, 5.11) that pα is a dw,α-sheeted covering of the unit

disk that is conformally conjugate to z 7→ zdw,α , and by Riemann’s removable
singularity theorem, we have that p−1(w) consists of a single point zα ∈ Uα
whose local degree n(zα) is dw,α. It is worth noting that this conjugation is
not simultaneous for all Uα above W . To summarize:

Proposition 19.2. Let p : S → T be a branched covering map. If w ∈ T
and W is an open connected neighborhood of w such that:

1. If
⊔
α Uα are the connected components of p−1(W ), then p|Uα : Uα → W

is a proper non-constant holomorphic map;

2. W is conformally isomorphic to the unit disk D;

3. W is small enough such that w is possibly the only ramification point
in W ;

Then, for each component Uα, there is a single element zα ∈ Uα on the
fiber p−1(w), and p|Uα → W is conformally conjugate to the map D → D
given by z 7→ zdw,α, possibly ramified over zα.

This tells us very directly how we should picture BCMs: locally they are
many disk coverings, of possibly different degrees, and in general being pos-
sibly infinite-to-one, in contrast to proper non-constant holomorphic maps.
Moreover, branched covering maps p : S → T are quotient maps, being open,
continuous and surjective.

Proposition 19.3. If p : S → T is a branched covering map, the set of
critical values is closed and discrete.

Proof. Let ŵ be a critical value of the regular branched covering p : S → T .
Let W be a BCM-neighborhood of w, such that p−1(W ) =

⊔
α Uα. As stated

previously, for each α, p−1(ŵ)∩Uα = {ẑα}, so that for w ̸= ŵ inW , p−1(w) is
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contained in
⊔
α Uα and has dα,ŵ distinct element in each Uα, none of which

is a critical point given that the branching is only over ẑα. Hence W \ {w}
has no critical values.

Moreover, of ŵ is not a critical value, the same reasoning as above shows
that W can contian no critical values, so that the set of non-critical values
is open.

A regular branched covering is one for which there exists a group Γ ⊆
Aut(S) of conformal automorphisms of S for which the orbits of Γ are exactly
the fibers of p : S → T . More explicitly, for z ∈ S, Γz = p−1(p(z)). The
fibers, hence the orbits, are discrete. Since the action of Γ is transitive on
the fibers, the numbers dw,α depend only on w.

Proposition 19.4. Γ acts properly discontinuously on S.

Proof. If S = Ĉ, for any point z ∈ Ĉ, Stab(z) is finite. Moreover, we have
a bijection between the orbit Γz and Γ/ Stab(z). Since the orbit is finite, Γ
must be a finite group of conformal automorphisms, and hence consist of only
elliptic Möbius transformations. Evidently Γ acts properly discontinuously
on S.

Assume S is hyperbolic. Suppose K ⊆ S is compact such that for in-
finitely many distinct γ ∈ Γ, we have γK ∩K ̸= ∅. Then we get a sequence
of group elements γn and points zn ∈ K such that γnzn ∈ K. By taking
subsequences, we may assume that zn → z∞ ∈ K and γnzn → w∞ ∈ K.

As S is hyperbolic, Γ acts by isometries with respect to the Poincaré
metric, so that Γ, viewed as a family of continuous maps on S, is uniformly
equicontinuous. In fact,

d(w∞, γnz∞) ≤ d(w∞, γnzn) + d(γnzn, γnz∞) = d(w∞, γnzn) + d(zn, z∞)→ 0,

so that γnz∞ → w∞. Since the orbits of Γ must be discrete, by taking another
subsequence, we may assume that γnz∞ = w∞ for all n. In particular, for
σn = γ−1

1 γn ∈ Γ, we have σnz∞ = z∞ for all n.
By Montel’s theorem, some subsequence σn → σ∞ converges locally uni-

formly, and in particular on a neighborhood around z∞. If z is another point
in this neighborhood, where σnz → σ∞z, as the orbits have to be discrete,
we see that for some subsequence σnz = σ∞z for all n. By taking count-
ably many points in this neighborhood of z∞ and a diagonal subsequence,
we may assume that for all n, σn is the identity on a countable set of points
accumulating on z∞. But this implies that the σn must be the identity, a
contradiction.
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If S = C, all conformal automorphisms of C are of the form az + b. If
γ ∈ Γ is such that γz = az + b and |a| ̸= 1, by possibly taking γ−1 we may
assume |a| < 1. Then

γnz = anz + b(1 + a+ a2 + . . .+ an−1) = anz + b
1− an

1− a

which converges to b/(1−a) as n→∞. But since the orbits must be discrete,
this cannot happen; so for all γ ∈ Γ, we must have γz = az + b with |a| = 1.
(Rest of proof should follow for all euclidean cases...)

If p : S → T is a regular branched covering, at least as sets, we may
identify T and S/Γ. In fact, as p : S → T is a quotient map, we have a
homeomorphism T ∼= S/Γ, through which we can pullback the conformal
structure of T to S/Γ.

Conversely, if Γ ⊆ Aut(S), what are the conditions on Γ for p : S → S/Γ
to be a regular branched covering, and in particular, for S/Γ to be a Riemann
surface in a canonical way? From the above, it is necessary that Γ acts
properly discontinuously on S.

Proposition 19.5. If Γ is a group of conformal automorphisms of S acting
properly discontinuously, then S/Γ has a unique conformal structure such
that the projection p : S → S/Γ is holomorphic. Moreover, this projection
will be a branched covering map.

Remarks from McMullen: A general (smooth n-dimensional) orbifold
O is defined in the following way. We are given an underlying Hausdorff
topological space X with the following data (Uα, Vα, ϕα,Γα), where

• (Uα)α is a base of open sets for the topology on X;

• Vα are open sets in Rn;

• Γα is a finite group of diffeomorphisms of Vα;

• ϕα : Vα → Uα is a continuous maps whose fibers are the orbits of Γα,
therefore inducing a homeomorphism Uα ∼= Vα/Γα.

Moreover, the following compatibility condition must be satisfied; when
Uα ⊂ Uβ, we have an injective homomorphism Hβα : Γα → Γβ and a smooth
embedding ϕβα : Vα → Vβ such that:

• ϕβα(γz) = Hβα(γ)ϕα(z);
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• ϕβ = ϕβα ◦ ϕα.

For a complex n-dimensional orbifold, smoothness assumptions are re-
placed by holomorphicity.

In the case of complex 1-manifolds, this notion in fact coincides with
the prescription of a ramification index N : X → N on a Riemann surface,
specifying disk coverings around the singular points. In fact, quotients of the
disk in this form have a canonical conformal structure, so that the orbifold
inherits a conformal structure naturally.

If (S, ν) and (S ′, ν ′) are complex 1-orbifolds, a holomorphic map from
(S, ν) to (S ′, ν ′) is a holomorphic map f : S → S ′ on the underlying Riemann
surfaces such that, for all z ∈ S, we have the condition:

ν ′(f(z)) divides n(f, z)ν(z),

where n(f, z) is the local degree of f at z.
This is equivalent to the following lifting property. There exists Uα and

U ′
α neighborhoods of z and f(z), with charts ϕα : Vα → Uα, ϕ

′
α : V ′

α → U ′
α,

and a holomorphic map gα : Vα → V ′
α such that

f ◦ ϕα = ϕ′
α ◦ gα.

In fact, gα will be (conformally equivalent to) a branched covering of the disk
z 7→ zm, where m = n(f, z)ν(z)/ν ′(f(z)).

We say that f : (S, ν) → (S ′, ν ′) is an orbifold covering map if it is a
branched covering map from S to S ′ satisfying ν ′(f(z)) = n(f, z)ν(z).

With these notions, we can actually define the orbifold associated to a
rational map f : Ĉ→ Ĉ. See Chapter 19.

Problem (E-1. The complex plane with 2 ramified points). (1) If S = C
with ramification function satisfying ν(1) = ν(−1) = 2 and with no
other ramified points, show that the map z 7→ cos(2πz) provides a
universal covering C→ (C, ν).

(2) Show that the Euler characteristic χ(C, ν) is zero, and the fundamental
group π1(C, ν) consists of all transformations of the form z 7→ ±z + n
with n ∈ Z.

Proof. The map f : C → C given by f(z) = cos(2πz) is holomorphic and
surjective, and the critical points are of the form 1

2
n, for n ∈ Z. The critical

values are 1 and −1, corresponding respectively to the points n ∈ Z and
n+ 1

2
, for n ∈ Z. It is easy (?) to check that f is indeed a branched covering
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map over ±1, with local degree 2 at the critical points. In fact, f will be
a regular branched covering, since the group of conformal automorphisms
z 7→ ±z + n acts transitively on all the critical points in the preimage of
1 and of −1, properly discontinuously. As C is simply connected, it is a
universal (orbifold) covering.

The Euler characteristic of (C, ν) is given by

χ(C, ν) = χ(C) +
∑(

1

ν(w)
− 1

)
= 1 +

(
1

2
− 1

)
+

(
1

2
− 1

)
= 0.

The group of deck transformations of C→ (C, ν) contains z 7→ ±z + n, and
must be equal to it, given that any conformal automorphism is of the form
az + b, and such transformation must preserve both the integers and the
half-integers.

Problem (E-2. Ĉ with 3 ramified points). For S = Ĉ with three ramified
points ν(0) = ν(1) = ν(∞) = 2, show that the rational map

π(z) =
−4z2

(z2 − 1)2

provides a universal covering Ĉ → (Ĉ, ν). Show that χ(Ĉ, ν) = 1/2, that
the degree χ(Ĉ)/χ(Ĉ, ν) = 4, and that the fundamental group consists of all
transformations γ : z 7→ ±z±1.

Proof. Note that π is a proper 4-sheeted branched covering of Ĉ, where
π(∞) = 0, π(±1) =∞ and

π′(z) =
−8z(z2 − 1)2 + 4z22(z2 − 1)2z

(z2 − 1)4
= −8z(z2 − 1)

(z2 − 1)− 2z2

(z2 − 1)4

= 8z
z2 + 1

(z2 − 1)3
.

Then, in C, we have the finite critical points 0 and ±i. Moreover,

1

π(z)
=

(z2 − 1)2

−4z2
= −(z2 − 1)2

4z2
,

whose derivative is

−2(z2 − 1)2z(4z2)− 8z(z2 − 1)2

16z4
= −8z(z2 − 1)

2z2 − (z2 − 1)

16z4

= −(z2 − 1)
z2 + 1

2z3
= −z

4 − 1

2z3
.
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It is 0 at ±1, so that these points, mapping to ∞, are also critical points.
Since π has degree 4, the local degree at ±1 is 2, mapping to ∞.

We also have

π

(
1

z

)
=
−4(1/z)2

((1/z)2 − 1)2
=

−4z4/z2

z4(1/z2 − 1)2
=
−4z2

(1− z2)2

whose derivative is

−8z(1− z2)2 − 4z22(1− z2)(−2z)
(1− z2)4

= −z(1− z2)8(1− z
2) + 16z2

(1− z2)4

= −8z1− z
2 + 2z2

(1− z2)3
= −8z z2 + 1

(1− z2)3

so that∞ is a critical point mapping to 0. This implies that the local degree
of π at 0 and ∞ are both 2, mapping to 0.

Finally, since π(±i) = 1, and these are both critical points, the local
degrees are also 2, mapping to 1.

To conclude that π is also a regular branched covering, we consider con-
formal automorphisms γ of Ĉ that act transitively on the fibers of π. In
particular, they must be deck transformations, satisfying π ◦ γ = π. Hence γ
maps {0,∞} 7→ {0,∞}, {±1} 7→ {±1}, and {±i} 7→ {±i}. Since a Möbius
transformation is completely determined by the action on 3 points, the en-
tire group of deck transformations must be of the form γ : z 7→ ±z±1. It is
easy to compute that χ(Ĉ, ν) = 1/2 from the usual formula, and the deck
transformations correspond to the fundamental group of the orbifold.

Problem (E-3. Bad orbifolds). For Ĉ with one ramified point, or with two
ramified points with different ramification indices, show that there can be no
universal covering surface.

Proof. Lemma E.2 affirms, among other things, that if S̃ν is the universal
orbifold cover of (S, ν) with finite degree d, then χ(S̃ν) = χ(S, ν)d.

In the case of Ĉ with only one ramified point, we have χ(Ĉ, ν) = 1+ 1
ν(ẑ)

,
if ẑ is the ramified point. If the universalc covering has finite degree d, then

χ(S̃ν) =

(
1 +

1

n

)
d =

d(n+ 1)

n
,

which is an integer if and only if n divides d. In this case, the Euler char-
acteristic is ≥ n + 1 ≥ 3, which is impossible. Hence the covering must
be of infinite degree, being either C or D. But this is also a contradiction
with Lemma E.3. A similar analysis is possible with the other case of a bad
orbifold. (One may check that the fundamental group will need to have a
non-integer amount of elements.)

101



References

[1] C. McMullen, Complex Dynamics and Renormalization, Princeton University Press,
1995.

[2] J. Milnor, Dynamics in One Complex Variable, Vieweg, 2000.

102


	Simply Connected Surfaces
	Universal Coverings and the Poincaré Metric
	Normal Families: Montel's Theorem
	Fatou and Julia: Dynamics on the Riemann Sphere
	Dynamics on Hyperbolic Surfaces
	Dynamics on Euclidean Surfaces
	Smooth Julia Sets
	Geometrically Attracting or Repelling Fixed Points
	Böttcher's Theorem and Polynomial Dynamics
	Parabolic Fixed Points: the Leau-Fatou Flower
	Cremer Points and Siegel Disks
	The Holomorphic Fixed Point Formula for Rational Maps
	Most Periodic Orbits Repel
	Repelling Cycles are Dense in  J 
	Herman Rings
	The Sullivan Classification of Fatou Components
	Prime Ends and Local Connectivity
	Polynomial Dynamics: External Rays
	Hyperbolic and Subhyperbolic Maps

