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Comments for self on Milnor’s exposition of the Yoccoz puzzle for local
connectivity of polynomial Julia sets.

1 Local connectivity of quadratic Julia sets

1.1 Preliminaries

Let f be a polynomial. Recall the following theorems from [1]:

Theorem 1.1 (18.3. Landing Criterion). For a polynomial connected
Julia set J (that is, such that all of its critical orbits are bounded), J is
locally connected if and only if the Böttcher conjugacy map near ∞ extends
to a continuous surjective map φ : R/Z → J . The values in J correspond to
the landing points of external rays.

The proof follows from the theory of Carathéodory ends.

Theorem 1.2 (18.5. Locally connected Julia sets). If the polynomial
Julia set J is connected and locally connected, then every periodic point in
J is either repelling or parabolic. Moreover, every cycle of Siegel disks will
contain a critical point on its boundary.

In other words, if f is a polynomial, J is connected, and has either a
Cremer periodic point or a cycle of Siegel disks without boundary critical
point, then J is not locally connected.

The proof follows from the Snail lemma and compactness arguments on
the set of external rays landing at the periodic (which can be assumed fixed)
point. As for the Siegel disks, assuming local connectedness one may ex-
tend the linearization to the boundary homeomorphically, and repeat the
compactness arguments for the rays landing on this boundary.
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Theorem 1.3 (18.10. Rational Rays Land). Every periodic external ray
lands at a repelling or parabolic periodic point. If the angle is preperiodic,
then it lands at a preperiodic point.

The proof follows from the fact that rays landing at points must behave
well with respect to images and preimages, and the set of rays landing at a
specific point must preserve the cyclic ordering.

Theorem 1.4 (18.11-13. Repelling and Parabolic points are landing
points). If z0 ∈ J is a repelling periodic point, then at least one rational ray
lands on z0. Moreover, finitely may rays land on z0, all with the same period.

Suppose z0 is a parabolic fixed point whose multiplier is a primite q-th
root of unity, then every repelling petal of z0 has at least one ray landing
through it. All rays landing at z0 are periodic with period q. We may extend
the result to periodic parabolic points.

The proofs are considerably lengthier: the main idea is to consider the
“linearized Julia set” at the point, as a subset of a suitable shift space with
respect to the repelling behavior near it. The “linearized Fatou components”
will be coverings of the basin at infinity and must eventually me mapped
onto themselves; this is seen through detailed arguments from hyperbolic
geometry.

1.2 First Part

With these preliminaries, let f(z) = z2 + c have a single critical point
c0 = 0 and two repelling fixed points α and β, so that the ray R0 lands at
β. There will be q rays landing at α, all having the same period, and being
permuted among themselves by the doubling map. Later we will see that
there is a single cycle of rays, hence of period q. Note that q > 1, since
the only fixed ray is R0. These rays landing at α will disconnect J into q
pieces. As the critical point c = 0 belongs to one of the depth 0 puzzle
pieces, it will follow the dynamics of theses rays around α, justifying the
labeling according to it (we see later why). We will assume that the critical
point is not preperiodic. All the depth 0 puzzle pieces are seen to be simply
connected, as will be all other puzzle pieces (see also problem 1).

If P0 is a depth 0 puzzle piece, and it does not contain the critical value
f(c0), then f−1(P0) consists of exactly two simply connected puzzle pieces
mapping to it by a conformal isomorphism. Otherwise, f−1(P0) is a single
critical piece, simply connected and mapping to it by a 2-fold ramified cover-
ing. This inductively shows that all puzzle pieces are connected and simply
connected.
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Figure 1: depth 1 Yoccoz puzzle for z2 + i taken from [1].

Naturally, the puzzle pieces of the same depth partition the neighborhood
{G(z) < 2−d} of the Julia set J and have disjoint interiors. If qd is the number
of puzzle pieces of depth d, then qd+1 = 2qd + 1, and

qd = 2d(q − 1) + 1.

We also see that if Pd+1 is a puzzle piece which intersects Pd, then Pd+1 ⊂
Pd. This is true for d = 0, and since Pd = f−1(Qd−1) and Pd+1 = f−1(Qd)
for Qd−1 and Qd other puzzle pieces, we have that

Pd ∩ Pd+1 = f−1(Qd−1 ∩Qd) = f−1(Qd) = Pd+1,

since f(z) ∈ Qd−1 ∩Qd and, by induction, Qd ⊂ Qd−1.

On the proof of Lemma 1, part b): the hypothesis that the critical
annulus Ad(0) of depth d is excellent implies that we cannot have d = d′− lk
for some l, otherwise the north-east diagonal would “match up” at depth d
and find a semicritical annulus at depth d and column (l + 1)k. This would
contradict that the annulus is excellent.
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We also cannot find a critical annulus at depth d through this north-east
diagonal. Otherwise we would find a critical annulus at depth d− 1 for some
column of the interval lk < i < (l + 1)k, which, from the tableau rules,
had to have been copied over from the interval 0 < i < k at depth d − 1.
But this implies that in this interval of columns there is either a critical or
sem-icritical annulus at depth d, contradicting that either Ad(0) is excellent
or that the column k is the first one at depth d we go right to find a critical
annulus.

If we forego the hypothesis that Ad(0) is excellent, we could possibly find
a critical or semi-critical annulus at depth d in this diagonal. If it is a semi-
critical annulus, we are still able to find the second child after going right
towards the column m; but not in the other case.

Question: How do we know that the labeling of the depth 0 pieces
behaves as predicted? That is, how do we know that each depth 0 contains
is uniquely determined by which iterate ci of the critical point it contains,
for 0 ≤ i ≤ q − 1, assuming f is not postcritically finite? This depends
on understanding the combinatorics of how the depth 0 pieces are permuted
among themselves, which in turn depends on how the intervals between the
angles behave under the doubling map.

First we recall that indeed we have q > 1 rays landing at α, and that they
are all periodic with the same period. But do we know a priori that they are
all in the same cycle of period q? This is not immediate from theorem 1.4;
we shall soon prove this in the case of a repelling fixed point, instead of the
more general situation of a periodic point. But for now, we assume this fact.

We know that locally at α, f is a local homeomorphism that preserves
orientation, so not only are the angles 0 < θ0 < . . . < θq−1 stable under
doubling, they must rotate around the fixed point according to some rotation
number p/q. More precisely, there must exist some 1 < p < q − 1 such that
2θi ≡ θi+p, for all i. This also shows that certain combinatorial schemes of
angles are not realizable by a ray portrait around a repelling fixed point, for
example

1

5
7→ 2

5
7→ 4

5
7→ 3

5
7→ 1

5
.

Let P0(c0) be the depth 0 piece which contains the critical point. Any
other depth 0 piece must map conformally onto its image, and given the
rotating pattern of the rays, must cover a single other depth 0 piece. More
precisely, if P is a piece corresponding to the interval [θi, θi+1] of consecutive
rays, the image must correspond to the interval of consecutive rays [2θi, 2θi+1].
This also shows that β ∈ P0(c0), as it is the only piece that can map to itself.
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Moreover, −α ∈ P0(c0), as near −α there are points that are mapped into
all other pieces.

As the circle must cover itself twice under the angle doubling on the
equipotentials, the critical depth 0 piece must cover the entire circle at least
once, and if its interval is [θj, θj+1], it must cover the piece corresponding
to [2θj, 2θj+1] twice. In particular, the interval [θj, θj+1] must be the unique
interval of length greater than 1/2 and consequently the biggest interval.

If l is the length in radians of the smallest interval between consecutive
angles, the lengths of all intervals are

l, 2l, 4l, . . . , 2q−1l,

so that l = 1/(2q−1) and the interval of length 2q−1/(2q−1) must correspond
to P0(c0). As the angles themselves must be periodic of period q under dou-
bling, and therefore of the form θi = ri/(2

q−1), the smallest interval is of the
form [r/(2q−1), (r+1)/(2q−1)]. Moreover, as β ∈ P0(c0), being the landing
point of the ray of angle 0, necessarily P0(c0) is the piece corresponding to
the interval [θq−1, θ0].

Given the rotation number p/q on the angles under doubing, we also see
that we can label the depth 0 pieces according to the critical orbit ci as long
as c1 /∈ P0(c0). Suppose by contradiction that were the case, and let Q0

be the depth 0 piece that maps conformally onto P0(c0) covering it. As c1
has only the point c0 in its preimage, we would need to have c0 ∈ Q0 and
therefore Q0 = P0(c0), a contradiction with the conformal mapping. Hence
c1 /∈ P0(c0), and we can label the depth 0 according to the critical orbits.
This also justifies the labeling of the 2q − 1 depth 1 pieces as P1(ci) and
P1(−ci).

We return to the question of there possibly existing m cycles of rays
landing at α, each of period q, so that there are q′ = mq total rays. Given
the local homeomorphism at α, we still have a rotation angle of p′/q′, where
given the labeling 0 < θ0 < . . . < θq′−1 < 1, 2θi ≡ θi+p′ .

If P0(c0) is the critical piece, we still conclude that any other depth 0 maps
conformally onto its image, covering a single other depth 0 piece given the
rotation number, and β ∈ P0(c0). In particular, the interval corresponding
to P0(c0) is [θq′−1, θ0].

By focusing on just one cycle of rays and forgeting the others, we are still
led to the conclusion that the lengths of angle intervals for rays in this cycle
are distributed as

l, 2l, 4l, . . . , 2q−1l,

where P0(c0) is the piece corresponding to the biggest length. Therefore c0
must be in this intersection of intervals of consecutive angles of the same
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cycle, all of length 2q−1/(2q − 1); in particular, the length of [θq′−1, θ0] must
be less than 1/2. But this is not possible if the piece P0(c0) is to cover all
other pieces, so that there must be a single cycle and m = 1.

Here’s a shorter proof of the fact that there must be only one cycle of
rays, due to Jeremy Kahn: if [θi, θi+1] is an interval of consecutive angles,
then the forward images of the corresponding piece must eventually contain
the critical point, otherwise the length of the interval would be multiplied
by a power of 2 before coming back to itself, which is not possible. As the
critical piece must be contained in just one cycle of these angle intervals,
there must be only one.

A further remark: most of these initial ideas generalize to zd + c, where
we have d − 1 fixed rays for the angles j/(d − 1), 0 ≤ j ≤ d − 2, and they
all must correspond to distinct fixed points in J . Otherwise they would cut
up J in halves which would map not univalently onto their images, hence
containing a critical point. But since there is only one critical point not
counting multiplicity, this is not possible. The fixed point α which is left
must have a single cycle of rays landing on it, allowing for the definition of
the Yoccoz puzzle from it.

1.3 Problems

Problem (1-1. Local Connectivity). Prove that the intersection of J(f)
with each puzzle piece is connected. Conclude that J(f) is locally connected
at z whenever

⋂
P ∗
d (z) = {z}.

Proof. Let d > 0 be the smallest depth for which Pd(z) ∩ J is disconnected,
where Pd(z) is a puzzle piece. If Pd(z) is not a critical piece, then f : Pd(z) →
Pd−1(f(z)) is a conformal isomorphism and f : Pd(z)∩J → Pd−1(f(z))∩J a
homeomorphism, so that Pd−1(f(z))∩J would be disconnected and contradict
our assumption on smallest depth. If Pd(z) is a critical piece, then f :
Pd(z) → Pd−1(f(z)) is a ramified 2-covering, which implies that Pd(z) is
connected, but that Pd−1(f(z))∩J is disconnected. More explicitly, If U and
V are two components of Pd(z), such that 0 ∈ U , as each point has exactly
two preimages counted with multiplicity, it cannot be the case that they both
map to the same connected set. Similar arguments can be used to show that
each puzzle piece is simply connected.

As
⋂

P ∗
d (z) = {z} and each puzzle piece is a neighborhood of z in J ,

since they are arbitrarily small, J would be locally connected at z.

Problem (1-2. Semicritical annuli). If Ad(z) is a non-degenerate semi-
critical annulus of depth d > 0, show that Ad(z) is the union of
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(1) a ramified two-fold covering of Ad−1(f(z)), and

(2) a conformal copy of Pd(f(z)).

Using Grötzsch inequality, prove that mod Ad(z) >
1
2

mod Ad−1(f(z)).

Proof. We have Ad(z) = Pd(z) \ Pd+1(z), Pd(z) is a ramified 2-covering of
Pd−1(f(z)), and Pd+1(z) is one of the two conformal copies of Pd(f(z)) which
form f−1(Pd(f(z))) ⊂ Pd(z), since Pd(f(z)) does not contain the critical
value. Hence f−1(Ad−1(f(z))) corresponds to Pd(z) with two holes cut out,
corresponding to the components of f−1(Pd(f(z))), one of which is Pd+1(z).
Gluing back in the other component, we obtain the semi-critical annulus
Ad(z). Note that the two-fold ramified covering of Ad−1(f(z)) is not an
annulus, but as mentioned before, a disk with two holes.

Consider the picture below, where we have a 2-fold ramified covering
f : C → C ′ of a cylinder of modulus H onto a cylinder of modulus H ′. We
cut up C ′ at the branch value into two straight subcylinders C ′

1 and C ′
2:

1

H

c

1

H ′

f(c)

f

By considering the double unbranched covering f |f−1(C′
1)
: f−1(C ′

i) → C ′
i,

we have two possibilities. Either f−1(C ′
i) consists of two conformal copies

of C ′
i, where one is essentially embedded in C, or C ′

i is doubly covered by
an essentially embedded annulus in C of half the modulus. Whichever case
happens for C ′

1, the other happens for C ′
2, so we may assume that the first

case happens for C ′
1, and it has modulus h′.

By the inclusion of these annulli as preimages in C, we obtain by Grotzsch’s
inequality also that

H ≥ h′ +
1

2
(H ′ − h′) =

H ′ + h′

2
>

1

2
H ′,

since h′ > 0. This concludes the modulus estimate.

In some sense, the disk with two holes should have a “modulus” which
is 1

2
modAd−1(f(z)), given by the ramified 2-covering of Ad−1(f(z)), and the
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holomorphic inclusion of f−1(Ad−1(f(z))) ↪→ Ad(z) should give the inequality
between the moduli. This can be formalized through the language of extremal
length (or extremal width), and how it behaves with respect to ramified
coverings.

Recall that an annulus A is always conformally isomorphic to a cylinder
C of height ∆y and circumference ∆x by identifying the opposite vertical
sides on a rectangle [0,∆x]× [0,∆y], where the modulus is

mod(A) = mod(C) = ∆y

∆x
.

More generally, given a family of locally rectifiable paths Γ on some Rie-
mann surface S, the extremal length L(Γ) of Γ is given by

L(Γ) = sup
ρ

(infγ∈Γ Lρ(γ))
2

Aρ(S)
,

where the supremum ranges over all conformal metrics on S whose area is
̸= 0,∞. The extremal width W(Γ) is

W(Γ) = inf
ρ
{Aρ(S) : ∀γ ∈ Γ, Lρ(γ) ≥ 1},

where now we consider the conformal metrics on S satisfying the above nor-
malization condition on the paths in Γ. They are inverses of one another. As
an example, we may take Γ to be the family of paths in the annulus A that
connect the boundary components, so that L(Γ) = mod(A).

Suppose f : S → T is a d-sheeted unramified holomorphic covering, and
Γ is a path family on T . Let f ∗Γ be the path family on Γ consisting of all
paths in S whose image under f is a path in Γ:

γ ∈ f ∗Γ ⇐⇒ f∗γ = f ◦ γ ∈ Γ.

We show that
W(f ∗Γ) = dW(Γ).

For this, let ρ = ρ(z)|dz| be a conformal metric on T such that Lρ(γ) ≥ 1
for all γ ∈ Γ, and f ∗ρ the correspoding pullback metric on S. For γ̃ ∈ f ∗Γ a
lift of γ,

Lf∗ρ(γ) =

∫
γ

f ∗ρ =

∫
f◦γ

ρ = Lρ(f∗γ) ≥ 1,

as f : (S, f ∗ρ) → (T, ρ) is a local isometry, preserving the length of curves.
Moreover, by taking a covering of T by evenly covered neighborhoods and a
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partition of unity subordinate to it, and pulling back these neighborhoods to
S, we find that Af∗ρ(S) = d · Aρ(T ). Hence

W(f ∗Γ) ≤ dW(Γ).

Now let ν be a conformal metric on S such that Lν(f
∗γ) ≥ 1 for all

γ ∈ Γ), and define the metric ν̂ on T as the pointwise sum on the fibers:

ν̂(w) :=
∑

z∈f−1(w)

ν(z).

We can see that Lν̂(γ) ≥ d for γ ∈ Γ, being equal to the sum of the lengths
of all lifts of γ. By taking the metric d−1ν̂ on T , and since A(ν̂) = A(ν), we
get

A(d−1ν̂) = d−1A(ν).

As Ld−1ν̂(γ) ≥ 1, by taking the relevant infimums we obtain W(f ∗Γ) ≥
dW(Γ), which concludes the desired equality.

Problem (1-3. Non-degenerate annuli). Show that an annulus Ad(zm)
is non-degenerate if and only if the corresponding annulus A0(zd+m) of depth
0 is semi-critical.

Proof. The result is true for d = 1. The semi-critical annuli for d = 0 are
those whose inner regions are P1(−ci), for ci ̸= 0. (Does this depend on the
fact that 0, −α and β all belong to the same depth 0 piece?) Being a non-
degenerate annulus is a property preserved by the pre-images and images, so
that the result will be true for any depth.

Problem (1-4. Further Tableau Rules.). Let q ≥ 2 be the number of
external rays landing at the fixed point α. Show that the semi-critical depth
of a tableau column can never take the values 1, . . . , q − 1. Show that at
most q − 1 consecutive columns can be completely off-critical (semi-critical
depth −1), and show that scd(zi) = −1 for m < i < m+ q if and only if the
m-th column has semi-critical depth scd(zm) ≥ q.

Proof. Recall that for depth 0, we have the q puzzle pieces P0(c0), . . . , P0(cq−1),
corresponding to the regions in between the external rays. For depth 1, we
also have the pieces P1(−ci) ⊂ P0(0).

Suppose some column has semi-critical depth d for 1 ≤ d ≤ q− 1, so that
for this point ẑ we have ẑ ∈ Ad(0) = Pd(0) \ Pd+1(0). Therefore

fk(ẑ) ∈ Pd−k(ck),
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and in particular, fd(ẑ) ∈ P0(cd). Since for 1 ≤ d ≤ q − 1, we have that
J(f) ∩ P0(cd) = P1(cd), we get fd(ẑ) ∈ P1(cd), and fd+1(ẑ) ∈ P0(cd+1).

Letting ẑk := fk(ẑ), we have ẑd ∈ P1(cd) and ẑd−1 ∈ P1(cd−1) from the
above. For d > 1, we have two puzzle pieces as the preimage f−1(P1(cd)),
one of which is P2(cd−1). Each one is contained in one of two distinct puzzle
pieces of f−1(P0(cd)), one being P1(cd−1). And since ẑd−1 ∈ P1(cd−1), we will
also conclude that ẑd−1 ∈ P2(cd−1).

We proceed inductively until we obtain that ẑ1 ∈ Pd(c1), where c1 is the
critical value. Here, Pd(c1) actually has only one puzzle piece as its preimage,
being Pd+1(0), and ẑ must belong to it. But this will give us a contradiction
with ẑ ∈ Ad(0).

If a column is completely off-critical, this implies that ẑ ∈ P0(ci) for some
1 ≤ i ≤ q − 1. But in q iterations, at least one iterate must map into P0(0),
giving a semi-critical depth of at least 0. Combining the two facts above, we
must have that the semi-critical depth of zm must be ≥ q.

Problem (1-5. The critical orbit is generically dense). It is convenient
to say that a property of certain points in a compact set is generically true
if its true throughout a countable intersection of dense open subsets. For
example, one can show that for generic c in the boundary of the Mandelbrot
set, the map fc is not renormalizable, with both fixed points repelling. Let
Ud ⊂ ∂M be the set of parameter values c in the boundary of the Mandelbrot
set such that every puzzle piece of depth d for fc contains a post-critical point
ci = f i

c(0). Show that Ud contains a dense relatively open subset of ∂M . (To
prove density, use the fact that periodic points are dense in J(fc), and use
Montel’s theorem.) For a generic parameter value c ∈ ∂M , conclude that
the closure of the critical orbit is the entire Julia set J(fc). Conclude also
that no non-degenerate annulus can be excellent in the generic case.

Proof. Recall that α and β move smoothly with respect to c, along with
any external ray, given that the Böttcher uniformization of C \ K(fc) is
holomorphic in c. In fact, more is true. Given a repelling periodic point z0
for fc0 , for all c in a neighborhood of c0, z0 can be continued analytically as a
periodic point of the same period z(c), and if {θi} is the set of angles of the
rays landing at z0, {θi} is also the set of angles of the rays landing at z(c).
An analogous result holds true if z0 is preperiodic, provided it and no point
in its forward orbit is c0 ([2]).

With this, for c0 ∈ ∂M such that the critical orbit f i(c0) = ci does not
hit the fixed point α(c0), let V be some neighborhood of ∂M in C. Since we
only consider the Yoccoz puzzle up to depth d, we may shrink V around c0
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and assume that, for all c ∈ V , the Yoccoz puzzle for fc is combinatorially
the same, since the finitely many preimages of α will vary holomorphically
with c, along with the rays landing on them and the equipotentials Gc(z).
Hence we can make sense of a Yoccoz puzzle of depth d even if c ∈ V \M .

Suppose that c0 is such that the critical orbit passes through the inte-
rior of all depth d puzzle pieces. As we only need to keep track of finitely
many iterates, and they move holomorphically with respect to c, for a small
neighborhood W of c0 we guarantee that the critical orbit of c ∈ W still
passes through all depth d puzzle pieces (for fc). This implies that c0 is in
the interior of Ud.

As a consequence of topological transitivity and density of repelling pe-
riodic points on Jc, we can show that there exists a repelling periodic point
p(c0) whose orbit passes through the interior of all depth d pieces for c0.
There are in fact inifintely many such points, and we may choose one whose
orbit does not intersect the grand orbit of c0. Let p1(c0) and p2(c0) non-
periodic points in the grand orbit of p(c0), so that they are preperiodic and
mapped into the cycle of p(c0). By our assumptions, we may shrink V so
as to assume that pi(c) moves holomorphically with respect to c ∈ V for
i = 1, 2. Given the family of holomorphic functions φn : V → Ĉ given by
φn(c) = fn

c (c), we also construct

gn(c) =
(φn(c)− p1(c))(c− p2(c))

(φn(c)− p2(c))(c− p1(c))
.

If we assume that, for all c ∈ V , the critical orbit does not pass through
all the depth d pieces, then the functions gn avoid 0, 1 and ∞ in its image,
so that it becomes a normal family. This implies that φn is also normal,
and there exists a subsequence φnk

(c) = fnk
c (c) and a holomorphic function

φ : V → Ĉ such that φnk
→ φ locally uniformly.

For c ∈ V \ M , we see that fn
c (c) → ∞, so that φnk

must convergence
uniformly to ∞. But this cannot happen for c ∈ ∂M , since the critical orbit
is contained in the filled Julia set, a contradiction. Hence, there must exist
some c′ ∈ V such that the critical orbit of fc′ passes through all the depth
d pieces, or more precisely, that some iterate of c′ maps to p(c′) or f(p(c′)).
Moreover, since then the critical orbit for c′ is preperiodic, we in fact have
that c′ ∈ ∂M . This concludes the density part of the argument.

We see that Ud contains a dense open set of ∂M , so that
⋂

d Ud is dense in
∂M , corresponding to a generic set of points. This implies that for generic c,
any puzzle piece of any depth contains a critical point. As we are also in the
generic case where J is locally connected, the nested intersection of puzzle
pieces reduces to points. This proves that the post-critical set accumulates
at every point of J .
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