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1 Introduction

Let f : S2 → S2 be an orientation preserving degree d branched covering
map of a topological 2-sphere, and Pf be its postcritical set. We assume Pf

is finite. An important question is whether such a map is Thurston equiva-
lent to a postcritically finite rational map g : Ĉ → Ĉ, that is, there exists
homeomorphisms θ, θ′ : S2 → Ĉ such that the diagram below commutes:

(S2, Pf )
θ //

f

��

(Ĉ, Pg)

g

��

(S2, Pf )
θ′ // (Ĉ, Pg)

and θ is isotopic to θ′ relative to Pf . Thurston gave a necessary and suficcient
topological condition on whether such an equivalence exists. Let Γ be a set
of disjoint, non-trivial (non-nullhomotopic and non-peripheral) simple closed
curves on S2 \ Pf , no two homotopic to each other. We also say that Γ is a
multicurve. For each γ ∈ Γ, the pullback f−1(γ) is a set of disjoint simple
closed curves, mapping to γ with some degree. We say that Γ is f -stable if
for all γ ∈ Γ, every component of f−1(γ) is homotopic rel Pf to some curve
in Γ. If Γ = {γj}j, by considering the vector space RΓ, we have an induced
linear pullback map fΓ : RΓ → RΓ given on each basis element γj by

fΓ(γj) =
∑
j

∑
α

1

dα,i,j
γi,

where α ranges over all components γα of f−1(γj) which are homotopic to
γi rel Pf , and dα,i,j is the mapping degree of γα onto γj. Note that in
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this calculation we disconsider those components of the pullback which are
peripheral. Moreover, being a matrix with all entries non-negative, there
exists a real eigenvalue λ(f,Γ) of fΓ of largest absolute value. We also remark
that this pullback map may also be defined for multicurves which are not
necessarily f -stable, but as expected, information of non-trivial pullbacks
outside of Γ is not recorded in fΓ.

If f has hyperbolic orbifold (a condition visible from the portrait of f , that
is, the information about Ωf ∪Pf and the local degrees of the critical points),
then f is Thurston-equivalent to a rational map if and only if λ(f,Γ) < 1.
An f -stable multicurve with λ(f,Γ) ≥ 1 is said to be an obstruction.

We restrict ourselves to polynomial-like mappings, that is, those for which
there exists a fixed critical point of local degree d, so that f induces a proper
degree d branched cover of the plane R2 onto itself. Moreover, we consider
the additional hypothesis that all critical points of f are periodic, and we
wish to prove the following:

Theorem 1.1. Polynomial-like, critically periodic Thurston maps are unob-
structed.

2 Topology of branched covers and curves

Given two disjoint simple closed curves γ and η in R2, they are either
separated or nested, as a consequence of the Jordan curve theorem. Equiva-
lently, if Dγ denotes the open disk in R2 having γ as its boundary, we either
have Dγ ∩Dη = ∅ or Dγ ⊂⊂ Dη compactly contained (or the opposite inclu-
sion). Given γ, we want to understand the compact set f−1(Dγ). It is the
disjoint union

f−1(Dγ) = f−1(γ) ⊔ f−1(Dγ),

where f−1(Dγ) is open. Because f is open, we also have f−1(Dγ) = f−1(Dγ),
and as f is proper, both restricted maps

f |f−1(Dγ)
: f−1(Dγ) → Dγ, f |f−1(Dγ) : f

−1(Dγ) → Dγ

are also proper. Moreover, since f is a branched cover, f−1(Dγ) has finitely
many open components. If U is one of these components, then f |U : U →
Dγ is also proper, which can be checked readily from the above facts. In
particular, ∂U ⊆ ∂f−1(Dγ) = f−1(γ), and from a general converse we obtain

f−1(γ) =
m⋃
i=1

∂Ui.
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Note that, in principle, ∂Ui could be disconnected. Suppose that for some
i ̸= j we had x ∈ ∂Ui ∩ ∂Uj. We may take small neighborhoods V of f(x)
and W of x such that W maps to V homeomorphically, since f(x) /∈ Pf . If
we assume the curve γ to be C1 in R so that, by taking a small enough V , the
intersection Dγ ∩V is connected, the corresponding intersection in W is also
connected, so that there is a unique component Ui of f

−1(Dγ) intersecting W
and for which x ∈ ∂Ui. This shows that boundaries of distinct components
cannot intersect, and due to connectedness of each curve in f−1(γ), each one
is contained in some ∂Ui.

Suppose U is some component of f−1(Dγ), whose boundary curves are
organized by their nesting depth. Curves in a multicurve Γ which are not
nested inside of another one have depth 0; we inductively define the depth
of nesting for the other curves. Naturally curves having the same depth
within Γ are separated. If there were more than one curve in ∂U = Γ of
depth 0, either U would be unbounded in R2 or disconnected, a contradic-
tion. Hence ∂U consists of a γ′ of depth 0 nesting some curves γ′

1, . . . , γ
′
k

of depth 1; topologically this corresponds to a disk with k holes. Since
f |f−1(S2\Dγ)

: f−1(S2 \ Dγ) → S2 \ Dγ is also proper, each disk Dγ′
j
would

contain a component of f−1(S2 \ Dγ), and hence contain a point in the
preimage of f−1(∞), a contradiction with the map being polynomial-like.
This implies that Dγ′ = Ui, and ∂Ui is a single component of f−1(γ). We
conclude:

Lemma 2.1. The components of f−1(γ) are all separated, and each compo-
nent γ′ ⊆ f−1(γ) bounds a disk Dγ′ such that f |Dγ′

: D|γ′ → D|γ is a proper
map of the same degree as f : γ′ → γ.

We also obtain the following results:

Lemma 2.2. If γ and η are two separated curves, and γ′ and η′ are compo-
nents of f−1(γ) and f−1(η) respectively, then γ′ and η′ are separated.

Proof. Suppose on the contrary that Dγ′ ⊂ Dη′ . Since f maps Dγ′ onto Dγ

and Dη′ onto Dη, this would imply that there Dγ ⊂ Dη, a contradiction.

Lemma 2.3. Suppose that γ and η are two nested curves, with Dγ ⊂ Dη.
Then for each component γ of f−1(γ), there is some component η′ of f−1(η)
such that γ′ is nested inside of η′.

Proof. Since Dγ ⊂ Dη, f
−1(Dη) must intersect Dγ′ , And by connectedness

of Dγ′ it must be contained in some component of f−1(Dη).
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We may generalize the ideas above in the following form. Let f : S2 → S2

be a topological branched cover, not necessarily post-critically finite, γ ⊂
S2 \ Vf a simple closed curve on the complement of the critical values of f ,
and D one of the two open disks that it bounds. We pick a point on S2 \D
and label it ∞, and also pick a point ∞′ ∈ f−1(∞). Given any component U
of f−1(D) ⊂ S2 \∞′ ∼= R2, we may again order ∂U by depth of nesting. We
conclude that U will be the region bounded between one curve γ′ of depth 0
(with respect to ∂U , not f−1(γ)) and k separated curves γ′

1, . . . , γ
′
k of depth

1.
We now consider the full multicurve f−1(γ) ⊂ R2\∞′ ∼= R2, but normalize

the nesting depth to assume that γ′ has depth 0, allowing for negative nesting
depth. This just corresponds to translating it by some fixed value. For any
j = 1, . . . , k, we can similarly show that the region between γ′

j and the curves

of depth 2 that it nests corresponds exactly to a component of f−1(S2 \D).
Continuing for all depths, positive and negative, we can completely picture
all components of f−1(D) and f−1(S2 \ D). If we imbue γ with a given
orientation, each component of f−1(γ) will have an associated orientation
with which it maps to γ, and this orientation scheme is completely prescribed
by the set of curves with lowest nesting depth. This is because each curve it
nests will be transversed with opposite orientation to match.

∞′
γ′

γ′
1

γ′
2

γ′
3

Moreover, by Riemann-Hurwitz, if we know the degrees of the map f
restricted to each region, we may also recover the number of critical points
in each of them counting multiplicity. If U is a component of f−1(D), then
χ(U) = 1− k, where k is again the number of ”holes” in U . If b denotes the
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number of branch points in U counting multiplicity and d′ the degree of f |U ,
then

b = d′χ(D)− χ(U) = d′ − k + 1.

(Here we remark that, for example, 0 is a critical point of multiplicity 1
for z 7→ z2, being a simple critical point, even though it’s ramification index
is 2.) To illustrate, if d′ = 1, then f |U must be a homeomorphism and k = 0.
If dj is the degree of f |γ′

j
: γ′

j → γ, where γ′
0 = γ′, then d′ =

∑k
j=0 dj ≥ k+1,

which implies that b ≥ 2k. There are other inequalities possible, coming from
the fact that there are exactly 2d − 2 critical points counting multiplicity,
and that k + 1 ≤ d′ ≤ d, also because each of the k holes and the outside
region of U must contain a preimage of ∞.

We go further and claim that any such picture, with associated colorings
and mapping degrees, is realizable by a topological branched cover. More
precisely:

Theorem 2.4. Let Γ ⊆ S2 be a finite collection of simple closed curves,
deg : Γ → {1, 2, . . .} a given function, and c : π0(S

2 \ Γ) → {0, 1} a coloring
of the complentary regions of Γ such that no two adjacent regions share the
same color. Then there exists a topological branched cover f : S2 → S2 and a
simple closed curve γ ⊂ S2 \Vf such that f−1(γ) = Γ, each γ′ ∈ Γ is mapped
to γ with degree deg(γ′), and if D0, D1 are the two disks bounded by γ, then
f−1(Di) = c−1(i) for i ∈ {0, 1}.
Proof. We first show that if D is a topological closed disk and S is a topo-
logical disk with k holes, where each of the k + 1 boundary components of
S has an associated degree, then there exists a topological branched cover
g : S → D with corresponding mapping degrees on the boundary components
of S. Let γ′

j be the boundary curves of S, for j = 0, . . . , k. For a topological

model, it suffices to consider a rational function h : Ĉ → Ĉ whose only poles
are one of order deg(γ0) at ∞, and k finite distinct poles of order deg(γ′

j), for
j = 1, . . . , k. By taking a simple closed curve γ sufficiently close to ∞ in the
spherical metric, we may identify the closure of the bounded component of γ
with D, so that h−1(D) will consist of a single component which is a closed
disk with k holes. Moreover, the mapping degrees of the boundary com-
ponents of h−1(D) will match the prescribed ones (also with an associated
orientation).

To produce the full picture in the sphere, we only need to recreate the
topological model for all regions in S2 \ Γ, where those with different color
must be created with opposite orientation, mapping to complementary disks
on S2. By gluing them together appropriately at the boundaries, and possibly
post-composing the resulting map with an inversion to match the coloring,
we obtain the result.
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It is a different matter to ask whether such pictures are always realizable
for post-critically finite branched covers, and such that γ is non-trivial (or
even belongs to an obstruction); we would need to keep track of Pf closely by
deforming the glued maps in each region appropriately. We avoid answering
this question here.

3 Dynamics

Let pγ be the number of postcritical points inside of Dγ, and qγ to be
number of postcritical points outside of γ (Here pγ + qγ = p − 1, where
we are not considering the point at infinity). Note that this number is a
homotopy invariant in R2 \ Pf , and in order for γ to be non-peripheral, we
must have pγ ≥ 2, qγ ≥ 1. Recall our assumption that f is critically periodic;
this implies that Ωf ⊆ Pf and that f |Pf

: Pf → Pf is injective, since Pf is
distributed into the cyclic orbits of the critical points.

If γ′ is a component of f−1(γ), then

pγ′ ≤ pγ,

since each point in Pf ∩Dγ′ has to map injectively to a point in Pf ∩Dγ. In
other words, the number of postcritical points inside a curve is non-increasing
under pullback. Furthermore, since the components of the pullback f−1(γ)
must be separated, in particular they cannot be homotopic in R2 \Pf unless
they are peripheral.

It’s important to note, however, that homotopy classes in R2 \ Pf may
collapse together under pullback. More precisely, if γ is nested inside η in
R2 \ Pf , and γ′ is a component of f−1(γ) and η′ is the unique component of
f−1(η) which nests γ′, it could be the case that γ′ and η′ are homotopic in
R2\Pf even if γ and η are not homotopic; This is because our actual mapping
is R2 \ f−1(Pf ) → R2 \ Pf , so that if x is a postcritical point which is inside
η but outside γ, its corresponding preimage x′ inside of η′ and outside of γ′

may not be a postcritical point. Another possible way to view this situation
is through the composition of the two maps

ι : R2 \ f−1(Pf ) → R2 \ Pf , f : R2 \ f−1(Pf ) → R2 \ Pf

which determine the dynamics.
Let Γ be an f -stable multicurve. For γi, γj ∈ Γ, there can be at most one

component γα of f−1(γj) which is homotopic to γi in R2 \ Pf , given that the
components of the pullback are separated; so the sum in fΓ(γj) has at most
one term coming from the components α for each j. We define dij to be the
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degree of the mapping f : γα → γj, and dij = 0 if such γα homotopic to γi
does not exist. Note that

∑
i dij ≤ d, and that the non-zero entries of fΓ are

1/dij.
Fix some γi ∈ Γ, and suppose that γj and γk are separated curves in Γ

such that there are components γα of f−1(γj) and γβ of f−1(γk) where γα
and γβ are homotopic to γi (recall that this homotopy is in R2 \Pf , and that
these components are unique being homotopic to γi). As γi is non-trivial,
this implies that γα and γβ are nested, but this is only possible if γj and
γk are nested or homotopic, which is a contradiction; hence either dij = 0
or dik = 0. In other words, among separated curves γj1 , γj2 , . . . , γjm ∈ Γ, at
most one can have dijl ̸= 0.

This suggests that we should organize the multicurve Γ into a structure
which guarantees that some curves are separated. One way to do so is by the
values pγ; naturally curves in Γ having the same number of postcritical points
enclosed inside them must be separated. Moreover, with the hypothesis that
the critical orbits are all periodic, the number pγ is non-increasing under
pullback, which further dictates how the pullback acts on this structure of Γ.

We consider a different structure of Γ, that of nesting. The depth nγ

is non-increasing under pullback, since separated curves stay separated and
nested curves stay nested, but possibly collapsing to the same homotopy class
in R2 \Pf . Evidently curves having the same depth of nesting are separated.

If we order the curves in Γ by their depth of nesting, the matrix for fΓ
becomes block upper triangular, since a curve γi may be pulled back only
to curves γj having depth of nesting nγj ≤ nγi . Because the eigenvalues
of a block upper triangular matrix are the collection of eigenvalues of each
diagonal block, if Γ is an obstruction then for some nesting depth n the
curves Γn having this depth can be extended to form an obstruction. By this
reasoning, we may assume from the outset that our f -stable multicurve Γ
which is an obstruction consists of only separated curves.

In this situation, by the previous reasonings, every row of fΓ can have
at most one non-zero entry. In other words, if γi is the pullback (or more
precisely, homotopic to a pullback) of a curve in Γ, it is the pullback of a
unique such curve γj; we may represent this as a formal mapping γi → γj. If
γi is not the pullback of any curve in Γ, so that the i-th row in fΓ is identically
zero, then any non-zero eigenvalue of fΓ has to come from the minor matrix
obtained from fΓ by excluding the i-th row and the i-th column. Hence we
may assume that no row is identically zero, as Γ \ {γi} is still f -stable and
constitutes an obstruction.

We therefore have a well-defined formal mapping f̂ : Γ → Γ of the curves
as above. In principle, it need not be injective or surjective, as would be
the case, for example, if a single curve γ ∈ Γ has pullbacks homotopic to all
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curves in Γ and all other curves have trivial pullbacks, so that fΓ has a single
non-zero column. We want to extract from this dynamics of curves a Levy
cycle. If f is a postcritically finite topological branched cover, a multicurve
{γ1, . . . , γm} is a Levy cycle if for all j = 1, . . . ,m, the curve γj−1 is homotopic
to a component γ′

j of F
−1(γj) rel Pf , and F |γ′

j
: γ′

j → γj is a homeomorphism,
that is, is of degree 1. It can be shown readily that any Levy cycle may be
completed to a Thurston obstruction ([2]).

In our Thurston obstruction Γ, curves are either periodic under f̂ or
preperiodic. We may organize fΓ as a block square matrix according to the
periodic cycles, and the preperiodic curves. Moreover, note that (f)kΓ = (fΓ)

k

and f̂k = f̂k. By taking a high enough iterate of f , so that all periodic curves
under f̂ are fixed by fk and all preperiodic curves are mapped into the set
of periodic ones, we get that fk

Γ has upper triangular block form[
D 0
A 0

]
where D is diagonal. It is sufficient then to consider the eigenvalues of D,
that is, its diagonal entries; but each is a product of factors of the form 1/dij
for curves in a cycle under f̂ . Then Γ is an obstruction only if at least one of
these cycles under f̂ consists entirely of degree 1 mappings, that is, a Levy
cycle. Hence:

Theorem 3.1. A polynomial-like postcritically finite topological branched
cover f : R2 → R2 has a Thurston obstruction if and only if it has a Levy
cycle.

Moreover, by the arguments preceding Lemma 2.1, this Levy cycle cor-
responds to a cycle of disks bounded by these curves and homeomorphisms
between them, up to isotopy. In the notation of [2], this corresponds to a
degenerate Levy cycle.

Proof of the main theorem. Recall the hypothesis that all critical orbits are
periodic. As each γi ∈ Γ will enclose at least one critical point in its cycle, the
degree of the mapping cannot be one, so that there can be no Levy cycle.

The proof strategy above in fact works even under the weaker hypothesis
that all cycles in Pf contain a critical point.

4 Final Remarks

After having finished the arguments above, the author recognized that
most of the proof strategy is subsumed as a particular case of Theorem 3.1
of [2], in particular item (4).
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