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1 Introduction

Conformal maps in complex analysis enjoy many nice geometrical prop-
erties. Apart from preserving angles, they posses smoothness, removability
of singularities and stability under locally uniform convergence, to name a
few well known results.

However, at times, a more general class of maps is needed. This is so in
many different contexts: when studying certain objects in complex dynamics,
understanding the difference between hyperbolic structures on Riemann sur-
faces, and, perhaps more historically accurate, understanding which maps
extremize some mapping problem. This paves the way for the notion of
quasiconformal maps, which intuitively are maps that distort the conformal
geometry of objects in a bounded way. They have properties analogous (and
sometimes identical) to conformal maps, making their study particularly rich.
There are two common definitions of quasiconformal maps, one of geometric
nature and the other analytic. Both are important for understanding them,
and the interplay between the geometry and analysis is crucial for their ap-
plications.

2 The Geometric Definition

2.1 The Modulus of a Quadrilateral

Quasiconformal maps may be first understood by certain geometrical in-
variants that conformal maps preserve, and considering which maps general-
ize this invariance in a controlled form.
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Consider a Jordan domain Ω ⊂ Ĉ, that is, a connected open set Ω such
that ∂Ω is a simple closed curve. It is a theorem that if f : Ω → Ω′ is a
conformal map between two Jordan domains, then f extends continuously to
the boundary as an orientation preserving homeomorphism f : Ω → Ω′. Such
a map is uniquely determined by the image of three distinct boundary points
of ∂Ω, because any automorphism of D is given by a Möbius transformation,
which is determined by the the image of three points on ∂D.

Given distinct points z1, z2, z3, z4 ∈ ∂Ω in cyclic order, we say that Ω is a
quadrilateral Q(z1, z2, z3, z4). By the Riemann mapping theorem, we may
find a conformal map from Ω to the upper half-plane H, and by a suitable
elliptic integral, a conformal map from Ω to the rectangle

R = (0, a)× (0, b) ⊂ C

mapping the vertices to 0, a, a + bi and bi in cyclic order. Call the arcs
(z1, z2) and (z3, z4) to be the a-sides of Q, and likewise (z2, z3), (z4, z1) to be
the b-sides.

z1

z2

z4

z3

0 a

a+ bibi

Ω

The value a/b > 0 is unique:

Proposition 2.1. If f : R → R′ is a conformal map mapping vertices to
vertices in cyclic order and sides to sides, then a/b = a′/b′.

Proof. By the Schwarz reflection principle, we may extend the map to the
whole complex plane by reflecting about each of side of the rectangle suces-
sively, “tiling” C by reflected copies of R. The resulting map is a conformal
entire map, hence affine; since it fixes the origin and maps a to a′, it must
be the map a′z/a. Hence a′b/a = b′, so a/b = a′/b′.

This allows us to define the modulus M(Q(z1, z2, z3, z4)) of the quadri-
lateral as the ratio a/b ∈ (0,+∞). As a consequence, the modulus of a
quadrilateral is a conformal invariant. Note that

M(Q(z2, z3, z4, z1)) = M(Q(z1, z2, z3, z4))
−1.
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We search for a characterization of the modulus that does not rely on
conformal maps. Consider again f : Q → R a conformal map from Q onto a
rectangle R of length a and height b, where M(Q) = a/b. The area of R is
given by ∫∫

Q

|f ′(z)|2dxdy = ab.

Let Γ be the family of locally rectifiable arcs joining the sides (z1, z2) and
(z3, z4) of Q; for all γ ∈ Γ, ∫

γ

|f ′(z)||dz| ≥ b

with equality if and only if γ is the preimage of a vertical line in R. Hence

M(Q) =

∫∫
Q
|f ′(z)|2dxdy(

infγ∈Γ
∫
γ
|f ′(z)||dz|

)2 .
This length-area ratio is generalized is the following way. Let P be the

family of non-negative, measurable and locally integrable functions ρ on Q
such that Aρ(Q) :=

∫∫
Q
ρ2dxdy ̸= 0,∞. Intuitively, P is the family of con-

formal metrics on Q, and we may calculate the length of a curve γ ∈ Γ by
Lρ(γ) :=

∫
γ
ρ(z)|dz|.

Proposition 2.2.

M(Q) = inf
ρ∈P

Aρ(Q)

(infγ∈Γ Lρ(γ))
2 ,

where the infimum is attained by ρ(z) = |f ′(z)|, f being the canonical con-
formal map taking Q to the rectangle (0, a)× (0, b).

Proof. Given ρ ∈ P , we obtain a corresponding function ρ̃(z) = ρ(z)/|f ′(z)|.
Then

Aρ(Q) =

∫∫
Q

ρ2dxdy =

∫∫
Q

ρ̃2|f ′(z)|2dxdy =

∫∫
R

ρ̃2dudv,

and

Lρ(γ) =

∫
γ

ρ|dz| =
∫
γ

ρ̃|f ′(z)||dz| =
∫
f◦γ

ρ̃|dw|.

Letting l = infγ∈Γ Lρ(γ), for all u ∈ [0, a] we have that

l ≤
∫ b

0

ρ̃(u+ iv)dv =⇒ al ≤
∫ a

0

∫ b

0

ρ̃dudv,
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and by Fubini and Cauchy-Schwarz, we have

(al)2 ≤
(∫∫

R

ρ̃dudv

)2

≤
(∫∫

R

ρ̃2dudv

)(∫∫
R

1dudv

)
= Aρ(Q)ab,

which then shows the inequality.

By considering ρ ≡ 1 the usual euclidian metric on Q, with area A(Q) and
length of curves L(γ), define the value sa := infγ∈Γ L(γ) to be the minimum
distance between the a-sides of the quadrilateral with respect to the euclidean
metric, and likewise sb to be the minimum distance between the b-sides. We
obtain the crucial inequality:

Corollary 2.3 (Rengel’s Inequality).

s2b
A(Q)

≤ M(Q) ≤ A(Q)

s2a
,

with equality in both cases if and only if Q is a rectangle.

Equality happens exactly when |f ′(z)| ≡ 1, so that f is a rotation. Ren-
gel’s inequality has several nice consequences:

Proposition 2.4 (Superadditivity of the modulus). Given quadrilaterals Qn

for n ∈ N with disjoint interiors and a quadrilateral Q such that Qn ⊆ Q for
all n, and such that the a-sides of each Qn are contained one in each a-side
of Q, we have that

∞∑
n=1

M(Qn) ≤ M(Q).

If Q is a rectangle, then equality holds if and only if each Qn is a rectangle
and

∑∞
n=1A(Qn) = A(Q).

Q

Q1 Q2
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Proof. We may assume Q is a rectangle of height 1. As sa(Qn) ≥ 1, we have

by Rengel’s inequality that M(Qn) ≤ A(Qn)
s2a

≤ A(Qn), so∑
M(Qn) ≤

∑
A(Qn) ≤ A(Q) = M(Q),

with equality holding if and only if each Qn is a rectangle and the sum of the
areas equals the area of Q.

Suppose Q is a quadrilateral with sides a1, b1, a2, b2. We say that a se-
quence of quadrilaterals Qn with sides an1 , b

n
1 , a

n
2 , b

n
2 converges from the inside

to Q if Qn ⊂ Q if for every ε > 0, there exists Nε ∈ N such that for n ≥ Nε,
the sides ani , b

n
i lie within a strip of width ε of the sides ai, bi respectively.

Proposition 2.5 (Continuity of the modulus from inside). Suppose Qn con-
verges from the inside to Q. Then M(Qn) → M(Q).

Proof. We may assume Q is a rectangle R = [0,M(Q)]× [0, 1] by a suitable
conformal map f : Q → R, which is uniformly continuous on Q. The images
Q′

n of the quadrilaterals Qn by the conformal map converge from the inside
to R, so that we have s′nb → M(Q) and s′na → 1; since we also have A(Q′

n) ≤
A(R) = M(Q), taking the limit in Rengel’s inequality

(s′nb )
2

M(Q)
≤ (s′nb )

2

A(Q′
n)

≤ M(Q′
n) ≤

A(Q′
n)

(s′na )
2

≤ M(Q)

(s′na )
2

gives us that M(Qn) = M(Q′
n) → M(R) = M(Q).

A more general continuity property of the modulus is true, not just for
quadrilaterals converging from the inside, but the above is sufficient for our
purposes. It is also worth noting that for a given quadrilateral Q, we may
always construct a sequence Qn of quadrilaterals converging to Q from the
inside and having analytic arcs. This can be seen by mapping Q to the unit
disk with four marked points on the boundary, and taking Q′

n to be disks of
radius 1− 1/n, with corresponding boundary points radially aligned.

2.2 Quasiconformal Maps

Given an open set U ⊆ Ĉ and K ∈ [1,∞), we say that f : U → Ĉ is a
K-quasiconformal map if f is an orientation preserving homeomorphism
onto its image and, for all quadrilaterals Q ⊂ U , we have that

M(f(Q)) ≤ KM(Q).
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Note that, given a quadrilateral Q(z1, z2, z3, z4) and taking Q(z4, z1, z2, z3), if
f is K-quasiconformal we in fact obtain the double inequality

1

K
M(Q) ≤ M(f(Q)) ≤ KM(Q)

for all quadrilaterals Q ⊂ U . We define the dilation of f as

K(f) := sup
Q⊂U

M(f(Q))

M(Q)
.

It is evident from the definition the following properties:

i. A conformal map is 1-quasiconformal;

ii. The inverse of a K-quasiconformal map is K-quasiconformal;

iii. if f is K1-quasiconformal and g is K2-quasiconformal, then g◦f is K1K2-
quasiconformal.

We may recover conformality from 1-quasiconformality:

Theorem 2.6. A 1-quasiconformal map is conformal.

Proof. Given a 1-quasiconformal map f : U → V , it is sufficient to show
conformality in a quadrilateral Q ⊂ U . We map Q and f(Q) to rectangles
by conformal maps, which preserve the modulus. Hence we may consider
the situation of a 1-quasiconformal map from [0,M ]× [0, 1] to [0,M ]× [0, 1].
Consider z = (x, y) ∈ Q. By dividing the rectangle into two rectangles
R1 = [0, x]× [0, 1] and R2 = [x,M ]× [0, 1], we see that M(R1)+M(R2) = M .
As M(f(Ri)) = M(Ri), we have that f(R1), f(R2) satisfy the equality in 2.4,
so that f(R1) and f(R2) are rectangles. Since x = M(R1) = M(f(R1)), we
have that the real part of f(z) is x. By repeating this argument with respect
to y, we conclude that f(z) = z, and f is the identity.

By continuity of the modulus from inside, we have the following useful
fact:

Lemma 2.7. Let Q be a quadrilateral and f : Q → Q′ an orientation pre-
serving homeomorphism to a quadrilateral Q′ which is K-quasiconformal in
its interior. Then M(Q′) ≤ KM(Q).

This next result shows that quasiconformality is a local condition:
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Theorem 2.8. If f : U → V is a orientation preserving homeomorphism
such that for all z ∈ U , f is K-quasiconformal in a neighborhood of z, then
f is K-quasiconformal.

Proof. It is sufficient to consider the case of a homeomorphism between rect-
angles f : R → R′, where R = [0,M ] × [0, 1] and R′ = [0,M ′] × [0, 1], and
show that M(R′) ≤ KM(R). By a compactness argument, we may find a
grid on R where on each rectangle of the grid, f is K-quasiconformal. Con-
sider horizontal lines connecting the b-sides of R with distance less than h
apart, including the horizontal lines of the grid. As f is uniformly continuous,
we may take h such that, for all horizontal strips Sj = [0,M ]× [yj, yj+1] and
the smaller substrips Sj

i which the vertical lines of the grid divide Sj into,
the images of the b-sides of each Sj

i have the sum of their lengths smaller
than some given ε > 0.

Sj
1 Sj

2 Sj
3 Sj

4
S ′j
1

S ′j
2 S ′j

3 S ′j
4

R R′

f

Let S ′j, S ′j
i be the images of these strips. By our choice of h, we have∑

i

sb(S
′j
i ) > M ′ − ε,

and by Rengel’s inequality, M(S ′j
i ) ≥

sb(S
′j
i )2

A(S′j
i )

. Hence by Cauchy-Schwarz,

∑
i

M(S ′j
i ) ≥

∑
i

sb(S
′j
i )

2

A(S ′j
i )

≥
(∑

i sb(S
′j
i )
)2∑

i A(S
′j
i )

>
(M ′ − ε)2

A(S ′j)
.

By our hypotheses and lemma 2.7, M(S ′j
i ) ≤ KM(Sj

i ), and∑
i

M(S ′j
i ) ≤ KM(Sj) =

KM

yj+1 − yj
,

so that
yj+1 − yj
KM

≤ A(S ′j)

(M ′ − ε)2
,

and by summing over all horizontal strips, we have 1
KM

≤ M ′

(M ′−ε)2
. Taking

the limit as ε → 0 implies the result.
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There are two other notable ways of characterizing quasiconformal maps
by conformal invariants. The first is by the modulus of ring domains. Any
doubly connected domain B of Ĉ (that is, such that Ĉ \ B has exactly two
connected components) can be conformally mapped onto an annulus

Ar,R = {z : r < |z| < R},

where 0 ≤ r < R ≤ ∞. The number M(B) = 1
2π

log(R/r) is a conformal
invariant of B, defining the modulus of a ring domain, with analogous prop-
erties to the modulus of a quadrilateral. In fact, we can prove that an orienta-
tion preserving homeomorphism f : U → V is K-quasiconformal if and only
if for every ring domain R such that R ⊂ U , we have M(f(R)) ≤ KM(R)
[5].

The second is by the extremal length of path families Γ in a domain. It
is defined as

L(Γ) := sup
ρ∈P

(infγ∈Γ Lρ(γ))
2

A(ρ)
,

where again P is the family of conformal metrics in the domain and A(ρ)
is the area. This notion subsumes the previous definitions of the module
of quadrilaterals and of ring domains, and likewise it is a theorem that an
orientation preserving homeomorphism f is K-quasiconformal if and only if
for all path families, L(f(Γ)) ≤ KL(Γ).

3 The Analytic Definition

3.1 R-linear Maps

Any R-linear orientation-preserving map L : C → C can be uniquely
written in the form

L(z) = Az +Bz, A,B ∈ C,

where detL = |A|2 − |B|2 > 0. Note that L is C-linear if and only if B = 0.
Letting A = |A|eiα, we may also write

L(z) = eiα|A|(z + B

A
z),

which is a composition of a rotation, a dilation and a self-adjoint map z 7→
z + B

A
z. The latter has two orthogonal eigenvectors, and this illustrates that

geometrically L maps circles to ellipses.
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The Beltrami coefficient of L is defined as

µ(L) :=
B

A
=

∣∣∣∣BA
∣∣∣∣ ei2θ ∈ D,

and the dilation Dil(L) is the real value

Dil(L) :=
1 + |µ|
1− |µ|

=
|A|+ |B|
|A| − |B|

∈ [1,∞).

If ∥L∥ denotes the operator norm of L, we may recover Dil(L) also as

Dil(L) =
∥L∥2

detL
,

where ∥L∥ = sup∥u∥≤1 ∥Lu∥ = |A|+ |B| is the operator norm of L.
Geometrically, if E(L) denotes the ellipse which is the inverse image of

the unit circle by L, then Dil(L) is the ratio of the major and minor axes of
E(L), which are in the directions ei(θ+π/2) and eiθ respectively. As a C-linear
map maps circles to circles, intuitively the dilation of a an R-linear map
measures its deviation to a C-linear map, expressing the ratio of stretching
in orthogonal directions. A standard example is the map (x, y) 7→ ((b/a)x, y)
for 0 < a ≤ b, mapping a rectangle of sidelengths a × 1 diffeomorphically
onto a rectangle of sidelengths b × 1, preserving the sides; in this case the
dilation is b/a.

3.2 Quasiconformal Diffeomorphisms

Let U and V be domains in C and f : U → V a C1 orientation-preserving
diffeomorphism, where we write

f(z) = f(x+ iy) = u(x+ iy) + iv(x+ iy),

and u, v can be seen as R-valued functions in R2. Recall that f is conformal
if and only if it satisfies the Cauchy-Riemann equations

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
,
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which is equivalent to the differential dfz : C → C being C-linear, that is,[
∂xu ∂yu
∂xv ∂yv

]
=

[
a −b
b a

]
= a

[
1 0
0 1

]
+ b

[
0 −1
1 0

]
.

We define the Wirtinger derivatives by the formulas

∂

∂z
:=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
;

conformality of f is equivalent to ∂zf = 0. In general, the differential of f
may be written as

dfz(w) = ∂zf(w)w + ∂zf(w)w,

or simply
dfz = ∂zfdz + ∂zfdz.

Note that as f is orientation preserving, |∂zf | < |∂zf | for all z ∈ U . We
can talk about the dilation of dfz for each z ∈ U , obtaining the Beltrami
coefficient µf : U → D given by ∂zf/∂zf , and the dilation at each point

Dilz(f) =
1 + |µf |
1− |µf |

=
|∂zf |+ |∂zf |
|∂zf | − |∂zf |

=
∥dfz∥2

Jacz(f)
,

where Jacz(f) = det(dfz) > 0 is the determinant of the Jacobian of f at z.
With this notation, given K ≥ 1, we say that f : U → V is a K-

quasiconformal diffeomorphism if

sup
z∈U

Dilz(f) ≤ K.

In this case we denote Dil(f) := supz∈U Dilz(f). Equivalently, for k =
K − 1

K + 1
,

where 0 ≤ k < 1, f is quasiconformal if for all z ∈ U we have

|∂zf | ≤ k|∂zf |.

This essentially says that the infinitemisal ratio of stretching of f is
bounded; observe that a 1-quasiconformal diffeomorphism is just a confor-
mal map. From the usual chain rule of derivatives applied to ∂z and ∂z,
we may also deduce the following identity for the Beltrami coefficient of a
composition g ◦ f of quasiconformal diffeomorphisms:

µg ◦ f =
∂zf

∂zf

µg◦f − µf

1− µfµg◦f
. (1)
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In particular, composing quasiconformal diffeomorphisms with conformal
maps either on the left or on the right preserves the dilation.

Since there is no conformal map between rectangles of different modules,
the following inequality indicates which C1 orientation preserving diffeomor-
phism between them minimizes the dilation:

Theorem 3.1 (Grötzsch). Let R = [0, a] × [0, b], R′ = [0, a′] × [0, b′] and
f : R → R′ be a C1 orientation preserving diffeomorphism mapping a-sides
to a′-sides and b-sides to b′-sides, where we assume a′/b′ ≥ a/b. Then

Dil(f) ≥ a′/b′

a/b
,

with equality if and only if f is the affine map (x, y) 7→ ((b′/b)x, (a′/a)y).

Proof. Consider a horizontal line in R, so that its image, parametrized by
f(x+ iy) for a fixed y, will have length not less than a′:

a′ ≤
∫ a

0

|∂xf(x+ iy)|dx ≤
∫ a

0

∥dfz(x+ iy)∥dx.

Since this is true for all y, we have

a′b ≤
∫ b

0

∫ a

0

∥dfz∥dxdy =

∫∫
R

√
Jacz(f)

∥dfz∥√
Jacz(f)

dxdy.

Applying Cauchy-Schwarz,

(a′b)2 ≤
∫∫

Jacz(f)dxdy

∫∫
R

∥df∥2

Jacz(f)
dxdy = a′b′

∫∫
R

Dilz(f)dxdy

≤ a′b′
∫∫

R

Dil(f)dxdy = (a′b′)(ab)Dil(f),

thereby proving the inequality. Equality happens only when Dilz(f) is a.e.
equal to (a′/b′)/(a/b), |∂xf | is a.e. equal to ∥dfz∥, and Dilz(f) is a.e. equal
to c∥dfz∥, where c is some constant. From

a′b =

∫∫
R

∥dfz∥dxdy,

as ∥dfz∥ is a.e. constant, this will imply that ∥dfz∥ is a.e. equal to a′/a, and
hence Jacz(f) is a.e. equal to (a′/a)(b′/b). This implies that a.e. dfz is of
the form [

a′/a 0
0 b′/b

]
,

and by integrating, f is the aformentioned affine map.
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The preceding proof in fact shows that the affine map has both least max-
imal dilation and least average dilation among all C1 orientation preserving
diffeomorphisms. We obtain the following crucial corollary:

Corollary 3.2. A K-quasiconformal diffeomorphism is K-quasiconformal in
the geometric sense.

Proof. For a quadrilateralQ ⊂ U , we may compose f with suitable conformal
maps so that the problem is reduced to theorem 3.1, and

M(f(Q))

M(Q)
≤ Dil(f).

As a partial converse, we have:

Theorem 3.3. If a K-quasiconformal map is differentiable at a point z0,
then Dilz0(f) ≤ K.

Proof. By composing f with translations and rotations, we may assume that
z0 = f(z0) = 0 and dfz is of the form z 7→ Az +Bz, for A,B > 0. Then

f(z) = Az +Bz + o(z).

We consider ε > 0 small so that the square Sε = [−ε, ε]2 is in the domain of
f . It follows that

sb(f(Sε)) = 2ε(A+B) + o(ε),

and that f(Sε) has area

A(f(Sε)) = 4ε2(A2 −B2) + o(ε2).

By Rengel’s inequality and that M(Sε) = 1, we have

4ε2(A+B)2 + o(ε2)

4ε2(A2 −B2) + o(ε2)
≤ M(f(Sε)) =

M(f(Sε))

M(Sε)
≤ K,

so that
(A+B)2 + o(ε2)/ε2 ≤ K((A2 −B2) + o(ε2)/ε2).

by taking ε → 0, we obtain that Dilz0(f) ≤ K.

These two results combine to show that a C1 orientation preserving dif-
feomorphism is a K-quasiconformal map if and only if Dil(f) ≤ K.
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3.3 Quasiconformal Maps

Quasiconformal maps are not in general diffeomorphisms, but it was dis-
covered that they possess a great deal of smoothness in a suitably general
context. There are two commonly used equivalent analytic definitions for
quasiconformal maps, generalizing the differential inequality for quasiconfor-
mal diffeomorphisms. One hightlights the concept of absolute continuity on
lines (ACL), and the other utilizes distributional derivatives.

A function f : [a, b] → C defined on a compact interval is said to be
absolutely continuous if, for all ε > 0, there exists a δ > 0 such that if
(ak, bk) ⊂ [a, b] are finitely many disjoint intervals and

∑
k(bk−ak) < δ, then∑

k |f(bk)− f(ak)| < ε. This is the most general class of functions for which
the fundamental theorem of calculus is true: f is absolutely continuous if
and only if f ′(t) exists almost everywhere, is integrable and f(x) − f(a) =∫ x

a
f ′(t)dt [7].
A function f : U ⊂ C → C is absolutely continuous on lines (ACL)

if, for every rectangle R, f is absolutely continuous on almost all vertical
lines of R and on almost all horizontal lines of R. As a consequence, if f
is ACL, it has partial derivatives almost everywhere. The following lemma,
whose proof in [1] uses Egorov’s theorem and points of Lebesgue density, is
relevant for what follows.

Lemma 3.4. If f is a homeomorphism and has partial derivatives almost ev-
erywhere, then f is differentiable almost everywhere. Moreover, the Jacobian
Jac(f) is locally integrable.

Given k = (K − 1)/(K +1), we say that an orientation preserving home-
omorphism f : U → V is K-quasiconformal if it is ACL and, for almost
every z ∈ U ,

|∂zf | ≤ k|∂zf |.

Since

Dilz(f) =
(|∂zf |+ |∂zf |)2

Jacz(f)
≤ K =⇒ |∂zf |2 ≤ |∂zf |2 ≤ K Jacz(f),

we obtain that the partial derivatives are in fact locally L2-integrable. We
also see that, as a consequence of being ACL, ∂zf and ∂zf will be weak
derivatives of f in the distributional sense: for any test function φ ∈ C∞

c (U),∫∫
U

(∂zf)φ = −
∫∫

U

f∂zφ,

∫∫
U

(∂zf)φ = −
∫∫

U

f∂zφ.

Conversely [1]:

13



Proposition 3.5. If f has locally integrable distributional derivatives, then
f is ACL.

This shows that an equivalent analytic definition for quasiconformal maps
is as such. Given K ≥ 1 and k = (K − 1)/(K + 1), a map f : U → V is
K-quasiconformal if it is an orientation preserving homeomorphism, it has
locally L2-integrable distributional derivatives and, for almost every z ∈ U ,

|∂zf | ≤ k|∂zf |.

It is a remarkable fact of the theory of quasiconformal maps that the
geometric and analytic definitions coincide.

Proposition 3.6. A K-quasiconformal map in the analytic sense is K-
quasiconformal in the geometric sense.

The proof of this is essentially the same as in theorem 3.1, where all no-
tions carry over for the absolute continuity on lines and local integrability of
the Jacobian. The only nuance understanding what happens to the distribu-
tional partial derivatives under composition with conformal maps, whereby
the usual chain rule of derivatives applies almost everywhere.

Proposition 3.7. A K-quasiconformal map in the geometric sense is K-
quasiconformal in the analytic sense.

Proof. First we prove that f is ACL; given a rectangle R = [a, b]× [c, d] ⊂ U ,
and for y ∈ [c, d], let A(y) = m(f([a, b] × [c, y])). It is a bounded incresing
function, so that its derivative exists almost everywhere [7]. We show that
f is absolutely continuous on [a, b] × {y} if A′(y) exists; by an analogous
argument for vertical lines, f will be ACL.

If (a1, b1), . . . , (ak, bk) are finite disjoint intervals in [a, b], consider the
rectangles Rj = [aj, bj]× [y, y + h] for some small h > 0, and αj and βj the
points (aj, y) and (bj, y) respectively. Note that |f(βj)− f(αj)| ≤ sb(f(Rj)),
and by Rengel’s inequality,

|f(βj)− f(αj)|2

m(f(Rj))
≤ M(f(Rj)) ≤ KM(Rj) = K

bj − aj
h

.

Applying Cauchy-Schwarz with the fact that
∑

m(f(Rj)) ≤ A(y), we obtain(
k∑

j=1

|f(βj)− f(αj)|

)2

≤

(
k∑

j=1

|f(βj)− f(αj)|2

m(f(Rj))

)(
k∑

j=1

m(f(Rj))

)

≤ K

h

k∑
j=1

(bj − aj)A(y),
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so that, as h → 0, we have(
k∑

j=1

|f(βj)− f(αj)|

)2

≤ KA′(y)
k∑

j=1

(bj − aj),

showing absolute continuity of f in [a, b]× {y}.
Since f is ACL, it is differentiable almost everywhere. By theorem 3.3,

Dilz(f) ≤ K wherever f is differentiable, which concludes that f is analyti-
cally K-quasiconformal.

With the analyitic definition for quasiconformal maps, the Beltrami co-
efficient µf (z) is a well defined function in L∞(U), where ∥µf∥∞ ≤ k < 1,
and f is a weak solution of the differential equation

∂zf(z) = µ(z)∂zf(z).

Given any measurable function µ : U → C such that ∥µ∥∞ < 1, we call

∂zf = µ∂zf (2)

a Beltrami equation. It is straightfoward to see, from what we have de-
duced previously, that a homeomorphism is quasiconformal if and only if it
is a solution of a Beltrami equation, in the sense that f is ACL, has locally
L2-integrable derivatives and they satisfy the equation almost everywhere.
Or equivalently, f has locally L2 distributional derivatives and they satisfy
(2). Rephrasing the condition of quasiconformality in terms of solutions of
a partial differential equation allows new insights into it. One of the main
ones is the measurable Riemann mapping theorem, which asserts that such
an equation always has solution in C, unique up to a specific normalization
condition. A more in depth discussion would take us too far into the beau-
tiful singular integral operators, such as the Hilbert and Ahlfors-Beurling
transforms: a treatment may be found in [5].
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