Another proof of convergence of Thurston's iteration on Teichmüller space for postcritically finite rational maps

Jeremy Kahn and Eduardo Sodré

December 19, 2024

Let $f: S^2 \to S^2$ be a postcritically finite branched cover of the 2-sphere, C_f be its critical points, and $P_f = \bigcup_{n=1}^{\infty} f^n(C_f)$ be its postcritical set. We want to prove that if f has no *obstruction* and *hyperbolic orbifold*, then it is Thurston equivalent to a rational map: there exists homeomorphisms h, h : $S^2 \to \hat{\mathbb{C}}$ isotopic rel P_f such that the diagram below commutes. Essentially, f has the same combinatorics as that of some rational map.

$$
(S^2, P_f) \xrightarrow{\tilde{h}} \hat{\mathbb{C}}
$$

$$
f \downarrow \qquad \qquad \downarrow g
$$

$$
(S^2, P_f) \xrightarrow{h} \hat{\mathbb{C}}
$$

An obstruction for f is a collection Γ of simple, closed, disjoint and nontrivial (that is, not null-homotopic and non-peripheral) curves in $S^2 \setminus P_f$, with the following properties. It is $f\text{-stable}$, meaning that for $\gamma \in \Gamma$, all preimages of γ under f are either trivial or homotopic to some curve in Γ. Being fstable, we may define the *Thurston linear transformation* $f_{\Gamma} : \mathbb{R}^{\Gamma} \to \mathbb{R}^{\Gamma}$ given by

$$
f_{\Gamma}(\gamma_j) = \sum_i \sum_{\alpha} \frac{1}{d_{j,i,\alpha}} \gamma_i,
$$

where α ranges over all components of $f^{-1}(\gamma_j)$ which are homotopic to γ_i , and $d_{j,i,\alpha}$ is the degree of the map $f|_{\gamma_\alpha}: \gamma_\alpha \to \gamma_j$. By Perron-Frobenius, f_{Γ}

has a largest non-negative real eigenvalue $\lambda(f, \Gamma)$. Then Γ is an obstruction if $\lambda(f,\Gamma) \geq 1$.

The map f induces an iteration σ_f : Teich $(S^2, P_f) \to$ Teich (S^2, P_f) given by pulling back complex structures by f. If we view elements of $\mathrm{Teich}(S^2, P_f)$ as diffeomorphisms $\varphi : (S^2, P_f) \to \hat{\mathbb{C}}$, where $\varphi_1 \sim \varphi_2$ if $\varphi_2 \circ \varphi_1^{-1}$ is isotopic to a conformal map rel $\varphi_1(P_f)$, we have a projection π : Teich $(S^2, P_f) \to$ $M(S^2, P_f)$ to the Moduli space of (S^2, P_f) , viewed as the injections $\iota : P_f \to \hat{\mathbb{C}}$ equivalent under post-composition with Möbius transformations. The projection is then just the restriction of φ to P_f . In our approach, we avoid the use of deformation theory on Teich (S^2, P_f) as in [1] by considering an intermediary quotient space between Teich (S^2, P_f) and $M(S^2, P_f)$, which we call the Rees space, on which the iteration σ_f is well-defined and behaves nicely. The most technical tool utilized is then the existence and uniqueness theorem of Teichmüller maps.

Given $\tau_1, \tau_2 \in \text{Teich}(S^2, P_f)$, we recall the definition of the Teichmüller distance $d(\tau_1, \tau_2)$. If μ_1, μ_2 are representative conformal structures, it is equal to $\frac{1}{2}$ inf_{ψ} log Dil(ψ), where the infimum is over all quasiconformal maps $\psi:(S^2,\mu_1)\to (S^2,\mu_2)$ isotopic to the identity rel P_f , and $\text{Dil}(\psi)$ is its (maximal) dilatation. Due to Teichmüller's existence and uniqueness theorem, this infimum is realized uniquely by a Teichmüller map q , which stretches the complex structures along some quadratic differentials in (S^2, μ_1) and (S^2, μ_2) . For any $\tau \in \text{Teich}(S^2, P_f)$, we let $d(\tau) = d_{\text{Teich}}(\tau, \sigma_f \tau)$. By lifting q to a quasiconformal map \tilde{q} with same dilatation via the diagram

$$
(S^2, f^*f^*\mu) \xrightarrow{\tilde{q}} (S^2, f^*\mu)
$$

$$
f \downarrow f
$$

$$
(S^2, f^*\mu) \xrightarrow{q} (S^2, \mu),
$$

we observe that

$$
d(\sigma_f \tau) \le d(\tau),\tag{1}
$$

and more generally, distances are non-increasing with respect to σ_f :

$$
d(\sigma_f \tau_1, \sigma_f \tau_2) \leq d(\tau_1, \tau_2).
$$

Given our hypothesis of f , we have reduced the problem to proving that σ_f has a fixed point.

We now describe the *Rees space* $R(F)$ of a portrait, and the associated Rees space $R(f)$ of f. Given abstract not necessarily disjoint finite sets C and P, a portrait F is a map $F: C \cup P \to P$ and a function deg : $C \to \{2, 3, \ldots\}$, meant to record the "0-dimensional data" of a postcritically finite branched cover. The Rees space $R(F)$ consists of tuples (e, G, μ) , where μ is a complex structure on S^2 , $e: C \cup P \to (S^2, P_f)$ is an injection, and $G: (S^2, \mu) \to (S^2, \mu)$ is a topological branched cover with $C_g = e(C)$, $P_g = e(P)$ such that $G \circ e =$ $e \circ F$ and $\deg G|_{e(c)} = \deg(c)$ for all $c \in C$. Two tuples (e_i, G_i, μ_i) for $i = 1, 2$ are equivalent if the corresponding self-maps of $S²$ are Thurston equivalent by a conformal h, that is, so that $h^*\mu_2 = \mu_1$ and $h \circ e_1|_P = e_2|_P$:

$$
(S^2, \mu_1) \xrightarrow{\tilde{h}} (S^2, \mu_2)
$$

\n
$$
G_1 \downarrow \qquad \qquad G_2
$$

\n
$$
(S^2, \mu_1) \xrightarrow{h} (S^2, \mu_2).
$$

Moreover, it is possible to normalize the complex structure by taking an equivalent tuple to assume that the μ is the standard complex structure on \mathbb{C} , so that $G : \mathbb{C} \to \mathbb{C}$ is a topological branched cover.

An equivalent description of the Rees space which will be important for us is as tuples (e, e', g, q) , where $e, e' : C \cup P \to \hat{\mathbb{C}}$ are injections, $g : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is holomorphic and $q : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is a homeomorphism such that:

- (i) $g \circ e' = e \circ F$ on $C \cup P$;
- (ii) deg $g_{e'(c)} = \deg(c)$, for all $c \in C$;
- (iii) $q \circ e' = e \text{ on } P$.

Two tuples are equivalent if there are conformal isomorphisms $h, h' : \hat{\mathbb{C}} \to$ \mathbb{C} , that is, Möbius transformations, such the first diagram below commutes and the second commutes up to isotopy rel $e'_{1}(P)$ with respect to the q_i . We recover the first description by considering the branched cover $g \circ q^{-1}$ on $\hat{\mathbb{C}} = (S^2, \hat{\mu})$, where $\hat{\mu}$ is the standard complex structure on $\hat{\mathbb{C}}$.

There are natural maps Teich $(S^2, P_f) \to R(F) \to M(S^2, P_f)$, where the image of Teich (S^2, P_f) in $R(F)$ is denoted by $R(f)$ and corresponds to the data of all maps Thurston equivalent to f. Hence elements of $R(f)$ may be viewed as conformal structures μ where $\mu_1 \sim \mu_2$ if there exists a homeomorphism h such that $h^*\mu_2 = \mu_1$ and h is a self-Thurston equivalence of f (note that any map isotopic to a Thurston equivalence is itself a Thurston equivalence). Equivalently, we may define a subgroup of $MCG(S^2, P_f)$ called the *special liftable* mapping classes $(LS(f))$, namely those h which form a self-equivalence of f, so $h \in \text{LS}(f)$ if there exists $h \sim h$ (rel P_f) such that $h \circ f = f \circ \tilde{h}$. Then $R(f) = \text{Teich}(S^2, P_f) / \text{LS}(f)$, and we imbue the Rees space with the quotient topology.

The iteration σ_f descends continuously to the quotient, inducing an iteration $\sigma_f : R(f) \to R(f)$. Moreover, since the action of MCG(S^2, P_f) on Teich (S^2, P_f) is isometric, the map $d: \text{Teich}(S^2, P_f) \to [0, +\infty)$ also descends continuously to $R(f)$: if $h \in \text{LS}(f)$,

$$
d(\mu, f^*\mu) = d(h^*\mu, h^*f^*\mu) = d(h^*\mu, \tilde{h}^*f^*\mu) = d(h^*\mu, f^*h^*\mu),
$$

since $h \sim \tilde{h}$ rel P_f . In fact, these properties motivate the definition of LS(f) and $R(f)$ in the first place, since for those mapping classes $h \in \text{LS}(f)$ we have $f^*h^*\mu = h^*f^*\mu$ for all μ , where the equality is to be understood as for elements of Teich (S^2, P_f) .

Note that $d(\alpha) = \frac{1}{2} \log \text{Dil}(q)$ is not necessarily the distance between α and $\sigma_f(\alpha)$ in $R(f)$, but if for some $\alpha \in R(f)$ we have $d(\alpha) = 0$, then f is Thurston equivalent to a rational map. With this in mind, we search for global minima of d on an adequately chosen compact subset of $R(f)$.

Lemma 1. The map $(\pi_M, d) : R(f) \to M(S^2, P_f) \times [0, +\infty)$ is proper.

Proof. We may assume $|P_f| \geq 3$; let $K \subset M(S^2, P_f)$ be compact and $d \geq 0$. We want to show that $R_{K,d} := \{ \alpha \in R(f) \mid \pi_M(\alpha) \in K, d(\alpha) \leq d \}$ is compact. Let $(\alpha_i)_{i\geq 0}$ be a sequence in $R(f)$, where $\alpha_i = [e_i, e'_i, g_i, q_i]$ and the q_i are Teichmüller maps. Given Möbius transformations M_i and N_i , we have

$$
\alpha = [e_i, e'_i, g_i, q_i] = [M_i e_i, N_i e'_i, M_i g_i N_i^{-1}, M_i q_i N_i^{-1}],
$$

so that we may assume there exists $p_1, p_2, p_3 \in P$ which are sent to $0, 1, \infty$ by all the e_i by choosing appropriate M_i , and that these points are fixed by q_i by choosing appropriate N_i . Under this normalization, and due to compactness in the moduli space, we may pass to a subsequence and assume that $e_i|_P$ converges to an injection $\iota : P \to \mathbb{C}$. Moreover, since the q_i are normalized e^{2d} -quasiconformal maps, we may also take a subsequence and assume that $q_i \to q$ uniformly, so that $e'_i|_P \to q^{-1}\iota$.

We consider diffeomorphisms $h_i : \hat{C} \to \hat{C}$ such that $h_i \circ e_i |_{P} = \iota$, "pushing" the points in $e_i(P)$ towards their limit $\iota(P)$, where the h_i converge uniformly to the identity on \mathbb{C} . In fact, we may assume that the h_i are quasiconformal and, for sufficiently large i , they are the identity outside of some small neighborhood of $\iota(P)$, shrinking with respect to i, and $Dil(h_i) \rightarrow 1$. Let $V = F(C) \subseteq P$, representing the abstract critical values, and $V_i = e_i(V) = g_i(e'_i(C))$ the critical values of g_i . The composition $h_i g_i : \hat{\mathbb{C}} \setminus g^{-1}(V_i) \to \hat{\mathbb{C}} \setminus \iota(V)$ is a covering map of degree d, inducing a subgroup $H_i < \pi_1(\mathbb{C} \setminus \iota(V))$ of index d. There are only finitely many subgroups of index d, so by passing to a subsequence we may assume all of the H_i are equal to some fixed $H_{\infty} < \pi_1(\hat{\mathbb{C}} \setminus \iota(V))$. There exists an associated covering space $g: E \to \hat{\mathbb{C}} \setminus \iota(V)$ and diffeomorphisms $k_i : \hat{\mathbb{C}} \setminus g_i^{-1}$ $i^{-1}(V_i) \to E$ such that the diagram below commutes:

$$
\hat{\mathbb{C}} \setminus g_i^{-1}(V_i) \xrightarrow{k_i} E
$$

\n
$$
g_i \downarrow \qquad \qquad g_i
$$

\n
$$
\hat{\mathbb{C}} \setminus V_i \longrightarrow \hat{\mathbb{C}} \setminus \iota(V)
$$

Topologically, E is a 2-sphere with some finite number of punctures, and if we pullback the conformal structure of $\mathbb{C} \setminus \iota(V)$ by g we may assume that $E = \mathbb{C} \setminus L$. Consequently, the k_i are quasiconformal diffeomorphisms such that $Dil(k_i) \leq Dil(h_i) \rightarrow 1$, and each extends to g_i^{-1} $i^{-1}(V_i)$, mapping it bijectively onto L.

The maps k_i send $0, 1, \infty$ into points in $g^{-1}(\iota(F(\{p_1, p_2, p_3\}), \text{ so by pass-})$ ing to a subsequence we may assume that the k_i are normalized to send $0, 1, \infty$ into three specific points independently of i. Moreover, by taking an isomorphic covering, we may assume that these three points are themselves $0, 1, \infty$. With this normalization, k_i converges uniformly to the identity, and by continuity of composition under uniform convergence,

$$
g_i = h_i^{-1}(h_ig_i) = h_i(gk_i) \rightarrow g.
$$

For $p \in P$, we see that $g k_i e'_i(p) = \iota(p)$, so that by passing to a subsequence $k_i(e_i(p))$ is a fixed element \widetilde{p} in $g^{-1}(\iota(p))$. Then

$$
e'_i(p) = k_i^{-1}(\widetilde{p}) \to \widetilde{p},
$$

but also $e'_i(p) \to q^{-1} \iota(p)$, so that $\tilde{p} = q^{-1} \iota(p)$. In particular

$$
\widetilde{p} = q^{-1} \iota(p) \implies g(\widetilde{p}) = \iota(p) = gq^{-1}(\iota(p)).
$$

This shows that g is the desired rational map and q the quasiconformal map whose composition forms a postcritically finite branched cover. We also get the Thurston equivalences

where $h_i \sim q k_i q_i^{-1}$ i^{-1} rel $e_i(P)$ since both are sufficiently close to the identity, and $\log \text{Dil}(h_i) \to 0$, showing convergence of the $(\alpha_i)_i$. \Box

More is true; if we imbue every "component" of $R(F)$, corresponding to post-critically finite branched covers in distinct Thurston equivalence classes, with the quotient topologies from the corresponding Teichmüller spaces, we get that (π_M, d) is proper in the entire domain $R(F)$.

We also have the following result, effectively proven in [1]:

Lemma 2. Suppose there exists τ for which $d(\tau) \leq D$. Then there is an integer $m \geq 1$ and a non-empty compact set $K \subset M(S^2, P_f)$ such that, if $\pi(\tau) \in K$ and $d(\tau) \leq D$, then $\pi(\sigma_f^m \tau) \in K$.

Proof. For $\tau \in \text{Teich}(S^2, P_f)$, define

$$
\omega(\tau) \coloneqq \sup_{\gamma} \{-\log l_\tau(\gamma)\},
$$

where the supremum ranges over all non-trivial simple closed curves γ in $S^2 \setminus P_f$ and $l_{\tau}(\gamma)$ is the length of the unique geodesic of τ homotopic to γ. Proposition 7.3 in [1] states that $ω$ is 2-Lipschitz and that, for all M, $\{\tau \in \text{Teich}(S^2, P_f): \omega(\tau) \leq M\}$ is the preimage of a compact set K in $M(S^2, P_f)$, so that a sequence in Teich (S^2, P_f) can only go to infinity in $M(S^2, P_f)$ if the length of some geodesic is going to 0.

Given that f is unobstructed, Proposition 8.2 in [1] guarantees that there exists an integer $m \ge 1$ and $C > 0$ such that, if $\omega(\tau) > C$ and $d(\tau) \le D$, then $\omega(\sigma_f^m \tau) < \omega(\tau)$. Suppose then that $d(\tau) \le D$ and $\omega(\tau) \le C + 2mD$. We divide into two cases; if $\omega(\tau) \leq C$, then because ω is 2-Lipschitz we get $\omega(\sigma_f^m \tau) \leq C + 2mD$. If $\omega(\tau) > C$, then by Proposition 8.2 we get that $\omega(\sigma_f^m \tau) < \omega(\tau) \leq C + 2mD$. This concludes that $K = \{\tau : \omega(\tau) \leq C + 2mD\}$ is our desired compact set. \Box

Letting

$$
E_{K,D} = \{ \tau \in \text{Teich}(S^2, P_f) \mid \pi(\tau) \in K \text{ and } d(f) \le D \} = \pi_R^{-1}(R_{K,D}),
$$

we see that $E_{K,D}$ is σ_f^m -invariant, for K and D given in Lemma 2. Consequently $\sigma_f^m(R_{K,D}) \subseteq R_{K,D}$, and it is compact. We then require only one more lemma:

Theorem 3. For all τ there exists n such that $d(\sigma_f^n \tau) < d(\tau)$.

Assuming Theorem 3, we can then prove that σ_f has a fixed point. As $R_{K,D}$ is non-empty and compact, we may find $\alpha \in R_{K,d_1}$ for which $d(\alpha)$ is minimal. If $d(\alpha) = 0$, we're done. Otherwise, $\sigma_f^{mn}(\alpha) \in R_{K,D}$ and $d(\sigma_f^{mn}(\alpha)) \leq d(\sigma_f^{n}(\alpha)) < d(\alpha)$, a contradiction.

Let's now prove Theorem 3. We need the following combinatorial lemma:

Lemma 4. If f has a hyperbolic orbifold and ψ is a quadratic differential for (S^2, P_f) , then there exists n such that $(f^n)^*\psi$ has a pole outside P_f .

Proof. We only need combinatorial properties of quadratic differentials for this result. Recall that, counting multiplicity, $Z - P = -4$, where Z is the number of zeros of ψ and P is the number of poles. We assume that the set of poles of ψ is contained in P_f . Moreover, if w is a zero of order $m \in \{-1, 0, \ldots\}$ for ψ , and z is such that it maps to w with local degree k, then z is a zero of order $k(m+2)-2$ for $f^*\psi$. This is because a zero of order m corresponds to a $(m + 2)$ -pronged singularity, which is pulled back to a $k(m+2)$ -pronged singularity by f.

Since poles are always simple for integrable holomorphic quadratic differentials, it is sufficient to show that the number of zeros eventually increases under iterated pullbacks. If w is a zero of order $m \geq 1$ for ψ , then each $z \in f^{-1}(w)$ is a zero of order $k_z(m+2) - 2 \geq 1$. Hence $f^*\psi$ doesn't have more zeros than ψ only when ψ itself has no zeros, and only 4 simple poles p_1, p_2, p_3, p_4 contained in P_f .

If $f^*\psi$ has no zeros, then all points mapping to some p_i must map with local degree $k = 1$ or 2, and if w is not a pole and $z \in f^{-1}(w)$, then z must map to w with local degree 1. This in particular implies that P_f is exactly the set of 4 poles. If some pole is also a critical point, it would be a regular point for $f^*\psi$. But as $f^*\psi$ has at least 4 poles, there would some pole for $f^*\psi$ outside of P_f . Therefore $C_f \cap P_f = \emptyset$, and the orbifold is euclidean of type $(2, 2, 2, 2)$, contradicting our assumptions. \Box

In fact, Lemma 2 in [1] sharpens this result to show that we can always take $n = 2$.

Now, given τ , we can form the Teichmuller map from τ to $\sigma_f \tau$, where we stretch along some quadratic differential ψ . This Teichmuller map lifts to a quasiconformal map from $\sigma_f \tau$ to $\sigma_f^2 \tau$:

$$
(S^2, f^*f^*\mu) \xrightarrow{\tilde{q}} (S^2, f^*\mu)
$$

$$
f \downarrow \qquad \qquad \downarrow f
$$

$$
(S^2, f^*\mu) \xrightarrow{q} (S^2, \mu).
$$

We may take these iterated lifts, and as soon as $f^{n*}(\psi)$ has a pole outside of P_f , the associated map from $\sigma_f^n \tau$ to σ_f^{n+1} $f_f^{n+1} \tau$ will not be a Teichmüller map. This then implies that $d(\sigma_f^n \tau) < d(\tau)$, and concludes the final argument needed for the result.

References

[1] A. Douady and J. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math. 171 (1993), 263-297.