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Let f : S2 → S2 be a postcritically finite branched cover of the 2-sphere,
Cf be its critical points, and Pf =

⋃∞
n≥1 f

n(Cf ) be its postcritical set. We
want to prove that if f has no obstruction and hyperbolic orbifold, then it is
Thurston equivalent to a rational map: there exists homeomorphisms h, h̃ :
S2 → Ĉ isotopic rel Pf such that the diagram below commutes. Essentially,
f has the same combinatorics as that of some rational map.

(S2, Pf )
h̃ //

f

��

Ĉ

g

��

(S2, Pf )
h // Ĉ

An obstruction for f is a collection Γ of simple, closed, disjoint and non-
trivial (that is, not null-homotopic and non-peripheral) curves in S2\Pf , with
the following properties. It is f -stable, meaning that for γ ∈ Γ, all preimages
of γ under f are either trivial or homotopic to some curve in Γ. Being f -
stable, we may define the Thurston linear transformation fΓ : RΓ → RΓ

given by

fΓ(γj) =
∑
i

∑
α

1

dj,i,α
γi,

where α ranges over all components of f−1(γj) which are homotopic to γi,
and dj,i,α is the degree of the map f |γα : γα → γj. By Perron-Frobenius, fΓ
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has a largest non-negative real eigenvalue λ(f,Γ). Then Γ is an obstruction
if λ(f,Γ) ≥ 1.

The map f induces an iteration σf : Teich(S2, Pf ) → Teich(S2, Pf ) given
by pulling back complex structures by f . If we view elements of Teich(S2, Pf )

as diffeomorphisms φ : (S2, Pf ) → Ĉ, where φ1 ∼ φ2 if φ2 ◦ φ−1
1 is isotopic

to a conformal map rel φ1(Pf ), we have a projection π : Teich(S2, Pf ) →
M(S2, Pf ) to the Moduli space of (S2, Pf ), viewed as the injections ι : Pf → Ĉ
equivalent under post-composition with Möbius transformations. The pro-
jection is then just the restriction of φ to Pf . In our approach, we avoid
the use of deformation theory on Teich(S2, Pf ) as in [1] by considering an
intermediary quotient space between Teich(S2, Pf ) and M(S2, Pf ), which we
call the Rees space, on which the iteration σf is well-defined and behaves
nicely. The most technical tool utilized is then the existence and uniqueness
theorem of Teichmüller maps.

Given τ1, τ2 ∈ Teich(S2, Pf ), we recall the definition of the Teichmüller
distance d(τ1, τ2). If µ1, µ2 are representative conformal structures, it is
equal to 1

2
infψ log Dil(ψ), where the infimum is over all quasiconformal maps

ψ : (S2, µ1) → (S2, µ2) isotopic to the identity rel Pf , and Dil(ψ) is its (max-
imal) dilatation. Due to Teichmüller’s existence and uniqueness theorem,
this infimum is realized uniquely by a Teichmüller map q, which stretches
the complex structures along some quadratic differentials in (S2, µ1) and
(S2, µ2). For any τ ∈ Teich(S2, Pf ), we let d(τ) = dTeich(τ, σfτ). By lifting q
to a quasiconformal map q̃ with same dilatation via the diagram

(S2, f ∗f ∗µ)
q̃
//

f
��

(S2, f ∗µ)

f
��

(S2, f ∗µ) q
// (S2, µ),

we observe that
d(σfτ) ≤ d(τ), (1)

and more generally, distances are non-increasing with respect to σf :

d(σfτ1, σfτ2) ≤ d(τ1, τ2).

Given our hypothesis of f , we have reduced the problem to proving that
σf has a fixed point.
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We now describe the Rees space R(F ) of a portrait, and the associated
Rees space R(f) of f . Given abstract not necessarily disjoint finite sets C and
P , a portrait F is a map F : C∪P → P and a function deg : C → {2, 3, . . .},
meant to record the “0-dimensional data” of a postcritically finite branched
cover. The Rees space R(F ) consists of tuples (e,G, µ), where µ is a complex
structure on S2, e : C∪P → (S2, Pf ) is an injection, andG : (S2, µ) → (S2, µ)
is a topological branched cover with Cg = e(C), Pg = e(P ) such that G ◦ e =
e ◦F and degG|e(c) = deg(c) for all c ∈ C. Two tuples (ei, Gi, µi) for i = 1, 2
are equivalent if the corresponding self-maps of S2 are Thurston equivalent
by a conformal h, that is, so that h∗µ2 = µ1 and h ◦ e1|P = e2|P :

(S2, µ1)
h̃ //

G1

��

(S2, µ2)

G2

��

(S2, µ1)
h // (S2, µ2).

Moreover, it is possible to normalize the complex structure by taking an
equivalent tuple to assume that the µ is the standard complex structure on
Ĉ, so that G : Ĉ → Ĉ is a topological branched cover.

An equivalent description of the Rees space which will be important for
us is as tuples (e, e′, g, q), where e, e′ : C ∪ P → Ĉ are injections, g : Ĉ → Ĉ
is holomorphic and q : Ĉ → Ĉ is a homeomorphism such that:

(i) g ◦ e′ = e ◦ F on C ∪ P ;

(ii) deg ge′(c) = deg(c), for all c ∈ C;

(iii) q ◦ e′ = e on P .

C ∪ P
F
��

e′ // Ĉ
g
��

P
e|P

// Ĉ

Ĉ
q
��

P

e′|P
@@

e|P
// Ĉ

Two tuples are equivalent if there are conformal isomorphisms h, h′ : Ĉ →
Ĉ, that is, Möbius transformations, such the first diagram below commutes
and the second commutes up to isotopy rel e′1(P ) with respect to the qi. We
recover the first description by considering the branched cover g ◦ q−1 on
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Ĉ = (S2, µ̂), where µ̂ is the standard complex structure on Ĉ.

C ∪ P
F
��

e′1 //

e′2

&&Ĉ h′ //

g1
��

Ĉ
g2
��

P
e1|P

//

e2|P

88Ĉ h // Ĉ

Ĉ
q1
��

h′ // Ĉ
q2
��

P

e′1|P
99

e1|P
//

e′2|P

$$

e2|P

99Ĉ h // Ĉ

There are natural maps Teich(S2, Pf ) → R(F ) → M(S2, Pf ), where the
image of Teich(S2, Pf ) in R(F ) is denoted by R(f) and corresponds to the
data of all maps Thurston equivalent to f . Hence elements of R(f) may be
viewed as conformal structures µ where µ1 ∼ µ2 if there exists a homeo-
morphism h such that h∗µ2 = µ1 and h is a self-Thurston equivalence of f
(note that any map isotopic to a Thurston equivalence is itself a Thurston
equivalence). Equivalently, we may define a subgroup of MCG(S2, Pf ) called
the special liftable mapping classes (LS(f)), namely those h which form a
self-equivalence of f , so h ∈ LS(f) if there exists h ∼ h̃ (rel Pf ) such that
h ◦ f = f ◦ h̃. Then R(f) = Teich(S2, Pf )/LS(f), and we imbue the Rees
space with the quotient topology.

The iteration σf descends continuously to the quotient, inducing an it-
eration σf : R(f) → R(f). Moreover, since the action of MCG(S2, Pf ) on
Teich(S2, Pf ) is isometric, the map d : Teich(S2, Pf ) → [0,+∞) also descends
continuously to R(f): if h ∈ LS(f),

d(µ, f ∗µ) = d(h∗µ, h∗f ∗µ) = d(h∗µ, h̃∗f ∗µ) = d(h∗µ, f ∗h∗µ),

since h ∼ h̃ rel Pf . In fact, these properties motivate the definition of LS(f)
and R(f) in the first place, since for those mapping classes h ∈ LS(f) we
have f ∗h∗µ = h∗f ∗µ for all µ, where the equality is to be understood as for
elements of Teich(S2, Pf ).

Note that d(α) = 1
2
log Dil(q) is not necessarily the distance between α

and σf (α) in R(f), but if for some α ∈ R(f) we have d(α) = 0, then f is
Thurston equivalent to a rational map. With this in mind, we search for
global minima of d on an adequately chosen compact subset of R(f).

Lemma 1. The map (πM , d) : R(f) →M(S2, Pf )× [0,+∞) is proper.
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Proof. We may assume |Pf | ≥ 3; let K ⊂M(S2, Pf ) be compact and d ≥ 0.
We want to show that RK,d := {α ∈ R(f) | πM(α) ∈ K, d(α) ≤ d} is
compact. Let (αi)i≥0 be a sequence in R(f), where αi = [ei, e

′
i, gi, qi] and the

qi are Teichmüller maps. Given Möbius transformations Mi and Ni, we have

α = [ei, e
′
i, gi, qi] = [Miei, Nie

′
i,MigiN

−1
i ,MiqiN

−1
i ],

so that we may assume there exists p1, p2, p3 ∈ P which are sent to 0, 1,∞ by
all the ei by choosing appropriateMi, and that these points are fixed by qi by
choosing appropriate Ni. Under this normalization, and due to compactness
in the moduli space, we may pass to a subsequence and assume that ei|P
converges to an injection ι : P → Ĉ. Moreover, since the qi are normalized
e2d-quasiconformal maps, we may also take a subsequence and assume that
qi → q uniformly, so that e′i|P → q−1ι.

We consider diffeomorphisms hi : Ĉ → Ĉ such that hi ◦ ei|P = ι,
“pushing” the points in ei(P ) towards their limit ι(P ), where the hi con-
verge uniformly to the identity on Ĉ. In fact, we may assume that the hi
are quasiconformal and, for sufficiently large i, they are the identity out-
side of some small neighborhood of ι(P ), shrinking with respect to i, and
Dil(hi) → 1. Let V = F (C) ⊆ P , representing the abstract critical val-
ues, and Vi = ei(V ) = gi(e

′
i(C)) the critical values of gi. The composition

higi : Ĉ \ g−1(Vi) → Ĉ \ ι(V ) is a covering map of degree d, inducing a sub-
group Hi < π1(Ĉ \ ι(V )) of index d. There are only finitely many subgroups
of index d, so by passing to a subsequence we may assume all of the Hi are
equal to some fixed H∞ < π1(Ĉ \ ι(V )). There exists an associated covering
space g : E → Ĉ \ ι(V ) and diffeomorphisms ki : Ĉ \ g−1

i (Vi) → E such that
the diagram below commutes:

Ĉ \ g−1
i (Vi)

ki //

gi
��

E

g
��

Ĉ \ Vi hi
// Ĉ \ ι(V )

Topologically, E is a 2-sphere with some finite number of punctures, and
if we pullback the conformal structure of Ĉ \ ι(V ) by g we may assume
that E = Ĉ \ L. Consequently, the ki are quasiconformal diffeomorphisms
such that Dil(ki) ≤ Dil(hi) → 1, and each extends to g−1

i (Vi), mapping it
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bijectively onto L.

C ∪ P
F
��

e′i // Ĉ ki //

gi
��

Ĉ
g
��

P
ei|P

// Ĉ hi // Ĉ

The maps ki send 0, 1,∞ into points in g−1(ι(F ({p1, p2, p3}), so by pass-
ing to a subsequence we may assume that the ki are normalized to send
0, 1,∞ into three specific points independently of i. Moreover, by taking an
isomorphic covering, we may assume that these three points are themselves
0, 1,∞. With this normalization, ki converges uniformly to the identity, and
by continuity of composition under uniform convergence,

gi = h−1
i (higi) = hi(gki) → g.

For p ∈ P , we see that gkie
′
i(p) = ι(p), so that by passing to a subsequence

ki(ei(p)) is a fixed element p̃ in g−1(ι(p)). Then

e′i(p) = k−1
i (p̃) → p̃,

but also e′i(p) → q−1ι(p), so that p̃ = q−1ι(p). In particular

p̃ = q−1ι(p) =⇒ g(p̃) = ι(p) = gq−1(ι(p)).

This shows that g is the desired rational map and q the quasiconformal map
whose composition forms a postcritically finite branched cover. We also get
the Thurston equivalences

Ĉ

giq
−1
i
��

qkiq
−1
i // Ĉ

gq−1

��

Ĉ hi // Ĉ

where hi ∼ qkiq
−1
i rel ei(P ) since both are sufficiently close to the identity,

and logDil(hi) → 0, showing convergence of the (αi)i.

More is true; if we imbue every “component” of R(F ), corresponding to
post-critically finite branched covers in distinct Thurston equivalence classes,
with the quotient topologies from the corresponding Teichmüller spaces, we
get that (πM , d) is proper in the entire domain R(F ).

We also have the following result, effectively proven in [1]:
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Lemma 2. Suppose there exists τ for which d(τ) ≤ D. Then there is an
integer m ≥ 1 and a non-empty compact set K ⊂ M(S2, Pf ) such that, if
π(τ) ∈ K and d(τ) ≤ D, then π(σmf τ) ∈ K.

Proof. For τ ∈ Teich(S2, Pf ), define

ω(τ) := sup
γ
{− log lτ (γ)},

where the supremum ranges over all non-trivial simple closed curves γ in
S2 \ Pf and lτ (γ) is the length of the unique geodesic of τ homotopic to
γ. Proposition 7.3 in [1] states that ω is 2-Lipschitz and that, for all M ,
{τ ∈ Teich(S2, Pf ) : ω(τ) ≤ M} is the preimage of a compact set K in
M(S2, Pf ), so that a sequence in Teich(S2, Pf ) can only go to infinity in
M(S2, Pf ) if the length of some geodesic is going to 0.

Given that f is unobstructed, Proposition 8.2 in [1] guarantees that there
exists an integer m ≥ 1 and C > 0 such that, if ω(τ) > C and d(τ) ≤ D,
then ω(σmf τ) < ω(τ). Suppose then that d(τ) ≤ D and ω(τ) ≤ C + 2mD.
We divide into two cases; if ω(τ) ≤ C, then because ω is 2-Lipschitz we
get ω(σmf τ) ≤ C + 2mD. If ω(τ) > C, then by Proposition 8.2 we get that
ω(σmf τ) < ω(τ) ≤ C+2mD. This concludes that K = {τ : ω(τ) ≤ C+2mD}
is our desired compact set.

Letting

EK,D = {τ ∈ Teich(S2, Pf ) | π(τ) ∈ K and d(f) ≤ D} = π−1
R (RK,D),

we see that EK,D is σmf -invariant, for K and D given in Lemma 2. Con-
sequently σmf (RK,D) ⊆ RK,D, and it is compact. We then require only one
more lemma:

Theorem 3. For all τ there exists n such that d(σnf τ) < d(τ).

Assuming Theorem 3, we can then prove that σf has a fixed point. As
RK,D is non-empty and compact, we may find α ∈ RK,d1 for which d(α)
is minimal. If d(α) = 0, we’re done. Otherwise, σmnf (α) ∈ RK,D and
d(σmnf (α)) ≤ d(σnf (α)) < d(α), a contradiction.

Let’s now prove Theorem 3. We need the following combinatorial lemma:

Lemma 4. If f has a hyperbolic orbifold and ψ is a quadratic differential
for (S2, Pf ), then there exists n such that (fn)∗ψ has a pole outside Pf .
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Proof. We only need combinatorial properties of quadratic differentials for
this result. Recall that, counting multiplicity, Z − P = −4, where Z is
the number of zeros of ψ and P is the number of poles. We assume that
the set of poles of ψ is contained in Pf . Moreover, if w is a zero of order
m ∈ {−1, 0, . . .} for ψ, and z is such that it maps to w with local degree k,
then z is a zero of order k(m+2)−2 for f ∗ψ. This is because a zero of order
m corresponds to a (m + 2)-pronged singularity, which is pulled back to a
k(m+ 2)-pronged singularity by f .

Since poles are always simple for integrable holomorphic quadratic differ-
entials, it is sufficient to show that the number of zeros eventually increases
under iterated pullbacks. If w is a zero of order m ≥ 1 for ψ, then each
z ∈ f−1(w) is a zero of order kz(m + 2) − 2 ≥ 1. Hence f ∗ψ doesn’t have
more zeros than ψ only when ψ itself has no zeros, and only 4 simple poles
p1, p2, p3, p4 contained in Pf .

If f ∗ψ has no zeros, then all points mapping to some pi must map with
local degree k = 1 or 2, and if w is not a pole and z ∈ f−1(w), then z must
map to w with local degree 1. This in particular implies that Pf is exactly
the set of 4 poles. If some pole is also a critical point, it would be a regular
point for f ∗ψ. But as f ∗ψ has at least 4 poles, there would some pole for
f ∗ψ outside of Pf . Therefore Cf ∩ Pf = ∅, and the orbifold is euclidean of
type (2, 2, 2, 2), contradicting our assumptions.

In fact, Lemma 2 in [1] sharpens this result to show that we can always
take n = 2.

Now, given τ , we can form the Teichmuller map from τ to σfτ , where we
stretch along some quadratic differential ψ. This Teichmuller map lifts to a
quasiconformal map from σfτ to σ2

fτ :

(S2, f ∗f ∗µ)

f
��

q̃
// (S2, f ∗µ)

f
��

(S2, f ∗µ) q
// (S2, µ).

We may take these iterated lifts, and as soon as fn∗(ψ) has a pole outside
of Pf , the associated map from σnf τ to σn+1

f τ will not be a Teichmüller map.
This then implies that d(σnf τ) < d(τ), and concludes the final argument
needed for the result.
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