Lower Bound for Smallest Geodesic

Eduardo Ventilari Sodré

March 2024

Let $f: S^2 \to S^2$ be a postcritically finite branched covering map, Ω_f the critical set, $P_f = \bigcup_{n>0} f^n(\Omega_f)$ the postcritical set, and $\sigma_f: \mathcal{T}_f \to \mathcal{T}_f$ be the Thurston pullback map on the Teichmuller space of (S^2, P_f) . If $\tau \in \mathcal{T}_f$ is represented by a diffeomorphism $\varphi: (S^2, P_f) \to \mathbb{P}^1$, then $\sigma_f(\tau)$ is represented by the diffeomorphism $\phi': (S^2, P_f) \to \mathbb{P}^1$ such that f_{τ} in the following commutative diagram is a holomorphic map:

We suppose that f has no obstruction, which means that, when the corresponding orbifold is hyperbolic, $\tau_i \coloneqq \sigma_f^i(\tau)$ converges to a unique fixed point in \mathcal{T}_f , or equivalently, for every f-stable multicurve Γ in (S^2, P_f) , the pullback map $f_{\Gamma} : \mathbb{R}^{\Gamma} \to \mathbb{R}^{\Gamma}$, defined by

$$f_{\Gamma}(\gamma_j) = \sum_{i,\alpha} \frac{1}{d_{i,j,\alpha}} \gamma_i,$$

has biggest eigenvalue $\lambda(f, \Gamma) < 1$. Since there are only finitely many possible matrices f_{Γ} for an f-stable multicurve Γ , this implies that there exists a uniform bound $\lambda(f, \Gamma) \leq \lambda < 1$ for all Γ . Moreover, there exists a smallest m > 0 such that $||f_{\Gamma}^{m}|| < \frac{1}{2}$. This is may be deduced as a consequence of the von Neumann formula for the spectral radius and the fact that there are finitely many matrices of the form f_{Γ} .

Given an essential closed curve γ in (S^2, P_f) , let $l_{\tau}(\gamma)$ be the length of the corresponding closed geodesic in τ in the homotopy class of $\phi(\gamma)$. Also define

$$\omega(\tau, \gamma) \coloneqq -\log l_{\tau}(\gamma).$$

Given an initial point $\tau_0 \in \mathcal{T}_f$ and $D := d(\tau_0, \tau_1)$, we want to find a lower bound for the length of the shortest closed geodesic of τ_i along the iteration by the Thurston pullback map. This is equivalent to finding an upper bound for

$$\omega(\tau) \coloneqq \sup_{\gamma} \omega(\tau, \gamma).$$

Since $(f_{\Gamma})^m = (f^m)_{\Gamma}$, let $\phi(P_f) = P$, $\phi'(P_f) = P'$, and $(f_{\tau}^m)^{-1}(P) = P''$, so that $f_{\tau}^m : \mathbb{P}^1 \setminus P'' \to \mathbb{P}^1 \setminus P$ is an unbranched holomorphic covering and $\mathbb{P}^1 \setminus P'' \to \mathbb{P}^1 \setminus P'$ is a holomorphic injection. This will allow us to compare the "lengths" $\omega(\tau, \gamma), \, \omega(\tau, \gamma')$ and $\omega(\tau', \gamma)$, for an essential closed curve γ in (S^2, P_f) and γ' a component of its preimage, where $\tau' = \sigma_f^m(\tau)$.

Recall the following:

Lemma 0.1. The functions $\tau \mapsto \omega(\tau, \gamma)$ and $\tau \mapsto \omega(\tau)$ are Lipschitz, with Lipschitz constant 2.

As $f_{\tau}^m : \mathbb{P}^1 \setminus P'' \to \mathbb{P}^1 \setminus P$ is a holomorphic covering map, if γ' is a component of $(f^m)^{-1}(\gamma)$, then

$$l_{\mathbb{P}^1 \setminus P''}(\gamma') = d_\alpha l_\tau(\gamma) \le d^m l_\tau(\gamma).$$

Moreover, because of the analytic inclusion $\mathbb{P}^1 \setminus P'' \hookrightarrow \mathbb{P}^1 \setminus P'$, we also have $l_{\mathbb{P}^1 \setminus P''}(\gamma') \geq l_{\tau'}(\gamma')$, so that

$$\omega(\tau', \gamma') \ge \omega(\tau, \gamma) - m \log d.$$

If τ and τ' are points in the orbit of τ_0 , we also have that $d(\tau, \tau') \leq mD$, so that, by the Lipschitz estimate,

$$\omega(\tau,\gamma) - m\log d \le \omega(\tau',\gamma') \le \omega(\tau,\gamma') + 2mD,$$

hence

$$\omega(\tau, \gamma) \le \omega(\tau, \gamma') + m(\log d + 2D),$$

In order to compare the growth of $\omega(\tau, \gamma)$ with the map f_{Γ} , we must find a way to guarantee that if γ is (in the homotopy class of) the shortest geodesic of τ , there is an *f*-stable multicurve Γ to which γ belongs.

Let $A = -\log(2\log(\sqrt{2} + 1))$, so that any two distinct closed geodesics γ_1, γ_2 with $\omega(\tau, \gamma_i) > A$ are simple and disjoint. Hence there are at most p-3 closed geodesics γ with $\omega(\tau, \gamma) > A$. Note then, that if $\omega(\tau) > B := A + (p-3)m(\log d + 2D)$, there will be, in the "length spectrum" $\omega(\tau, \cdot)$ of τ after A, a "gap" of length at least $J := m(\log d + 2D)$, that is, an interval such that no γ has this length. Let [a, b] be the first such interval, where then $a \ge A$ and $b < B < \omega(\tau)$.

Lemma 0.2. If $\Gamma_{J,\tau} := \{ \gamma \subset (S^2, P_f) : \omega(\tau, \gamma) > b \}$, then $\Gamma_{J,\tau}$ is an *f*-stable multicurve. Moreover, the closed geodesics in $\mathbb{P}^1 \setminus P''$ of length $< d^m e^{-b}$ are exactly the components of $(f^m)^{-1}(\Gamma_{J,\tau})$.

The lemma above is true because, as we saw above, the difference between $\omega(\tau, \gamma)$ and a $\omega(\tau, \gamma')$ for γ' a component of $(f^m)^{-1}(\gamma)$ cannot cross the gap of size J. A similar reasoning applies to show the second part. This also shows that if $\tilde{\gamma}$ is the shortest closed geodesic of τ' , then either $l_{\tau'}(\tilde{\gamma}) \geq d^m e^{-b}$, so that

$$\omega(\tau') \le b - m \log d < B - m \log d < \omega(\tau) - m \log d,$$

or $\tilde{\gamma}$ is a component of $(f^m)^{-1}(\Gamma_{J,\tau})$, and as $\Gamma_{J,\tau}$ is *f*-stable under the hypotheses, we have that $\tilde{\gamma}$ is either non-essential or homotopic to a curve in $\Gamma_{J,\tau}$.

Now suppose that, for some $\tau = \tau_i$, we have $\omega(\tau) > B$. Then we consider the *f*-stable multicurve $\Gamma = \Gamma_{J,\tau}$, which naturally contains the closed curve of shortest length in τ . If

$$v = \begin{bmatrix} l_{\tau}(\gamma_1)^{-1} \\ \vdots \\ l_{\tau}(\gamma_n)^{-1} \end{bmatrix}, \quad v' = \begin{bmatrix} l_{\tau'}(\gamma_1)^{-1} \\ \vdots \\ l_{\tau'}(\gamma_n)^{-1} \end{bmatrix}$$

we have that

$$f_{\Gamma}^{m}v = \begin{bmatrix} \sum_{j,\alpha} l_{\mathbb{P}^{1}\setminus P''}(\gamma_{1,j,\alpha})^{-1} \\ \vdots \\ \sum_{i,\alpha} l_{\mathbb{P}^{1}\setminus P''}(\gamma_{n,j,\alpha})^{-1} \end{bmatrix}.$$

We also know how to compare the length vectors $f_{\Gamma}^m v$ and v' through the analytic inclusion $\mathbb{P}^1 \setminus P'' \hookrightarrow \mathbb{P}^1 \setminus P'$ (proposition 7.1), which gives us that, for $1 \leq i \leq n$,

$$[v' - f_{\Gamma}^{m}v]_{i} \le \frac{2}{\pi} + \frac{pd^{m}}{L_{0}} \le \frac{2}{\pi} + pe^{B},$$

where $L_0 = d^m e^{-B}$. This is because the components $\gamma_{i,j,\alpha}$ of $(f^m)^{-1}(\gamma_j)$ which are homotopic to γ_i are exactly those curves in $\mathbb{P}^1 \setminus P''$ homotopic to γ_i in $\mathbb{P}^1 \setminus P'$ of length less than $L = d^m e^{-b} < L_0$.

If $|\cdot|$ denotes the supremum norm of a vector in \mathbb{R}^{Γ} , then

$$|v'| < \frac{1}{2}|v| + \frac{2}{\pi} + pe^B,$$

and therefore

$$\exp(\omega(\tau')) < \frac{1}{2}\exp(\omega(\tau)) + \frac{2}{\pi} + pe^B.$$

The linear iteration $x \mapsto \frac{1}{2}x + \frac{2}{\pi} + pe^B$ has a unique attracting fixed point at $x = \frac{4}{\pi} + 2pe^B$, so that an asymptotic upper bound for $\omega(\sigma_{f^m}^i(\tau_0))$ is $\log(\frac{4}{\pi} + 2pe^B)$. Note that our choice of τ_0 is arbitrary, hence $\omega(\tau_0)$ can be arbitrarily

large. But the upper bound by the linear iteration gives us that

$$\sup_{i} \omega(\sigma_{f^m}^i(\tau_0)) \le \max\{B, \ \omega(\tau_0), \ \log(\frac{4}{\pi} + 2pe^B)\}$$

where

$$B = A + (p-3)J$$

= $-\log(2\log(\sqrt{2}+1)) + m(p-3)(\log d + 2D).$

In conclusion,

$$\inf_{i} \min_{\gamma} l_{\sigma_{fm}^{i}(\tau_{0})}(\gamma) \geq \min\{e^{-B}, \min_{\gamma} l_{\tau_{0}}(\gamma), \left(\frac{4}{\pi} + 2pe^{B}\right)^{-1}\},$$

where the "asymptotic upper bound" for the smallest closed geodesic under iteration is

$$\left(\frac{4}{\pi} + 2pe^B\right)^{-1}$$