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Let f: S — 52 be a posteritically finite branched covering map, Q2 the
critical set, Py = (J,- f"(£)f) the postcritical set, and oy : Ty — Ty be the
Thurston pullback map on the Teichmuller space of (S?, P;). If 7 € T; is
represented by a diffeomorphism ¢ : (5%, Py) — P!, then o(7) is represented
by the diffeomorphism ¢ : (S? P;) — P! such that f, in the following
commutative diagram is a holomorphic map:

(2, Pp) L P!

1

(52, P;) 2 P!

We suppose that f has no obstruction, which means that, when the cor-
responding orbifold is hyperbolic, 7 = a}(T) converges to a unique fixed
point in 7}, or equivalently, for every f-stable multicurve I in (S?, Py), the
pullback map fr : R — R, defined by

1
fr(vg) = Z r%w
i

has biggest eigenvalue A(f,I") < 1. Since there are only finitely many possible
matrices fr for an f-stable multicurve I', this implies that there exists a
uniform bound A(f,T') < A < 1 for all I'. Moreover, there exists a smallest
m > 0 such that ||ff*|| < 3. This is may be deduced as a consequence of
the von Neumann formula for the spectral radius and the fact that there are
finitely many matrices of the form fr.

Given an essential closed curve v in (52, Pf), let [.(v) be the length of
the correspoding closed geodesic in 7 in the homotopy class of ¢(). Also
define

w(r,v) = —logl. (7).



Given an initial point 79 € 7 and D = d(7p, 71), we want to find a lower
bound for the length of the shortest closed geodesic of 7; along the iteration
by the Thurston pullback map. This is equivalent to finding an upper bound
for

w(T) = supw(T,7).
gl

Since (fr)™ = (f™)r, let ¢(P) = P, ¢/(Py) = P', and (f7")"(P) = P",
so that f™ : P!\ P” — P!\ P is an unbranched holomorphic covering and
P!\ P” — P!\ P’ is a holomorphic injection. This will allow us to compare
the “lengths” w(7,v), w(7,7) and w(7’,~), for an essential closed curve ~y in
(5%, Pr) and 4" a component of its preimage, where 7/ = o'(7).

Recall the following:

Lemma 0.1. The functions 7 — w(7,7) and T — w(T) are Lipschitz, with
Lipschitz constant 2.

As fm: PL\ P” — P!\ P is a holomorphic covering map, if 7 is a
component of (f™)~(v), then

lpnpr(7') = dal-(y) < d"12 (7).

Moreover, because of the analytic inclusion P!\ P” — P!\ P’, we also have
Ippr(Y') = 1(7'), so that

W(T/,’y/) > W(Ta 7) - mlog d.

If 7 and 7" are points in the orbit of 7y, we also have that d(7,7") < mD,
so that, by the Lipschitz estimate,

w(t,7y) —mlogd < w(r',v) <w(r,9) +2mD,

hence
w(r,v) <w(r,v") +m(logd + 2D).

In order to compare the growth of w(7, ) with the map fr, we must find a
way to guarantee that if 7 is (in the homotopy class of) the shortest geodesic
of 7, there is an f-stable multicurve I' to which v belongs.

Let A = —log(2log(v/2 + 1)), so that any two distinct closed geodesics
71,72 with w(7,v;) > A are simple and disjoint. Hence there are at most
p — 3 closed geodesics v with w(7,7y) > A. Note then, that if w(7) > B =
A+ (p—3)m(logd + 2D), there will be, in the “length spectrum” w(r,-) of
T after A, a “gap” of length at least J := m(logd 4 2D), that is, an interval
such that no v has this length. Let [a,b] be the first such interval, where
then a > A and b < B < w(7).



Lemma 0.2. If T, = {y C (S? P): w(r,v) > b}, then T, is an f-stable
multicurve. Moreover, the closed geodesics in P*\ P" of length < d™e™" are
ezactly the components of (f™) T ,).

The lemma above is true because, as we saw above, the difference between
w(T,7) and a w(r,~’') for ' a component of (f™)~!() cannot cross the gap of
size J. A similar reasoning applies to show the second part. This also shows
that if 4 is the shortest closed geodesic of 7/, then either 1./(3) > d™e™°, so
that

w(t') <b—mlogd < B—mlogd < w(1) — mlogd,

or 7 is a component of (f™)"Y(T,,), and as T';, is f-stable under the hy-
potheses, we have that 7 is either non-essential or homotopic to a curve in
Ly,

Now suppose that, for some 7 = 7;, we have w(7) > B. Then we consider
the f-stable multicurve I' = I'; -, which naturally contains the closed curve
of shortest length in 7. If

we have that )
>0 e (Ya)”
fr'v= :
Zi,a ZPI\P” (’)/n7j7a)_1
We also know how to compare the length vectors f{"v and v’ through the
analytic inclusion P!\ P” < P!\ P’ (proposition 7.1), which gives us that,
for 1 <i <n,

where Ly = d™e P. This is because the components 7; ;. of (f™)~(v;)
which are homotopic to ~; are exactly those curves in P!\ P” homotopic to
7; in P\ P’ of length less than L = d™e™" < Ly.

If | - | denotes the supremum norm of a vector in R, then
1 2
' < Slvl + = +pe”,
2 T
and therefore

exp(w(7')) < %exp(w(T)) + % + peP.
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The linear iteration z +— %:c + % + peP has a unique attracting fixed

point at = % + 2pe®, so that an asymptotic upper bound for w(a}m (70)) is
log(2 4 2pe”).

Note that our choice of 7y is arbitrary, hence w(7) can be arbitrarily
large. But the upper bound by the linear iteration gives us that

. 4
upw(fn (1)) < max{ B, w(ro), log(= +2pe”)}

where

B=A+(p—3)J
= —log(2log(V2 + 1)) + m(p — 3)(log d + 2D).

In conclusion,

L s 4 -
inf m;nla;m(70>(7) > min{e™”, m;nlro(v), (;+2p63> 2

where the “asymptotic upper bound” for the smallest closed geodesic under

iteration is
A —1
(— + 2pe® ) )
T



