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Following Milnor’s exposition [2] on the Yoccoz puzzle, we present some
drawings for the proofs of various facts about annuli and their children,
hoping to make the geometry more explicity from the combinatorics of the
tableau.

We repeat the basic definitions of the objects involved, but defer to [2] for
their use in proving local connectivity of the Julia set of non-renormalizable
quadratic maps.

1 Preliminaries

Let f : C → C be a polynomial. Recall the following well-known results
[1]:

Theorem 1.1 (Landing Criterion). For a polynomial connected Julia set
J (that is, such that all of its critical orbits are bounded) with filled Julia set
K, J is locally connected if and only if the Böttcher map ϕ : C \D → C \K
extends to the boundary as a continuous surjective map φ : R/Z → J . The
values in J correspond to the landing points of external rays.

The proof follows from the theory of Carathéodory ends.

Theorem 1.2 (Locally connected Julia sets). If the polynomial Julia set
J is connected and locally connected, then every periodic point in J is either
repelling or parabolic. Moreover, every cycle of Siegel disks will contain a
critical point on its boundary.

In other words, if f is a polynomial, J is connected, and has either a
Cremer periodic point or a cycle of Siegel disks without boundary critical
point, then J is not locally connected.
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The proof follows from the Snail lemma, and compactness arguments
on the set of external rays landing at the periodic (which can be assumed
fixed) point. As for the Siegel disks, assuming local connectedness one may
extend the linearization to the boundary homeomorphically, and repeat the
compactness arguments for the rays landing on this boundary.

Theorem 1.3 (Rational Rays Land). If the polynomial f has connected
Julia set, every periodic external ray lands at a repelling or parabolic periodic
point. If the angle is preperiodic, then it lands at a preperiodic point.

The proof involves hyperbolic geometry in parametrizing the external
ray, that rays landing at points must behave well with respect to images and
preimages, and that the set of rays landing at a specific point must preserve
the cyclic ordering.

Theorem 1.4 (Repelling and Parabolic points are landing points). If
the polynomial f has connected Julia set, and if z0 ∈ J is a repelling periodic
point, then at least one rational ray lands on z0. Moreover, finitely may rays
land on z0, all with the same period.

Suppose z0 is a parabolic fixed point whose multiplier is a primite q-th
root of unity, then every repelling petal of z0 has at least one ray landing
through it. All rays landing at z0 are periodic with period q. We may extend
the result to periodic parabolic points.

The main idea of the proof is to consider the “linearized Julia set” at
the point, as a subset of a suitable shift space with respect to the repelling
behavior near it. The “linearized Fatou components” will be coverings of the
basin at infinity and must be eventually mapped onto themselves.

2 The Yoccoz Puzzle

Let f : C → C be a quadratic polynomial with both fixed points repelling
and bounded critical orbit ci = f i(c0), so that the Julia set J is connected.
We also assume that f is not post-critically finite, as local connectivity of J
would already follow from hyperbolicity of f on a neighborhood of J with
respect to an orbifold metric. Let β be the fixed landing point of the external
ray R0, and α the other fixed point. We assume that there are q > 1 external
rays landing at α, being permuted by the doubling map on the angles. We
also consider V1 = {G(z) ≤ 1} as the simply connected neighborhood of the
filled Julia set K bounded by the equipotential {G(z) = 1}.

V1 is partitioned into q simply connected sectors, bounded by the external
rays and the equipotential, and meeting at the landing point α. These will
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be the depth 0 puzzle pieces of the Yoccoz puzzle. Inductively, if at depth
d we have the puzzle pieces P

(1)
d , . . . , P

(m)
d , the puzzle pieces of depth d + 1

consist of the connected components of the preimages f−1(P
(j)
d ). This means

that f : Pd+1 → Pd is a homeomorphism unless c0 ∈ Pd+1, in which case it is
a 2 to 1 branched covering map, conjugate to the squaring map on the disk.
In particular, all puzzle pieces are simply connected. The puzzle pieces of
depth d partition the set V2−d = {G(z) ≤ 2−d}, have disjoint interiors, and
if Pd+1 intersects Pd, then Pd+1 ⊂ Pd.

Below is a depiction of depth 0 and depth 1 puzzle pieces for the quadratic
map z2 + i with q = 3, taken from [2]:

Given z ∈ J , let Pd(z) be the puzzle piece of depth d which contains z.
If z is a preimage of α, Pd(z) is not uniquely identified, but we forego this
complication for the moment. The depth 0 pieces above are labeled according
to the critical orbit. The critical pieces are Pd(c0). The main purpose of
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puzzle pieces is to prove that the nested intersection

P0(z) ⊃ P1(z) ⊃ · · ·Pd(z) ⊃ · · ·

reduces to the singleton {z}, thereby proving local connectivity of J at this
point (where the intersection of J with each puzzle piece is connected). For
this, we consider the annuli Ad(z) := Pd(z) \Pd+1(z), where by the Branner-
Hubbard criterion, if the sum of the moduli

∑
d≥1Ad(z) diverges to ∞, then

the intersection reduces to {z}.
It could be the case that the set Pd(z) \ Pd+1(z) is not topologically an

annulus, for instance P0(c1) in the picture above. This is so if Pd(z) and
Pd+1(z) intersect on the boundaries. We will still call Ad(z) a degenerate
annulus, of modulus 0. One can check that Ad(z) has positive modulus if
and only if Ad−1(f(z)) also has.

The annuli are further classified into three possibilities:

• Critical, if c0 ∈ Pd+1(z) (or equivalently Pd+1(z) is the critical piece).
In this case, f : Ad(z) → Ad−1(f(z)) is a 2 to 1 unramified covering,
and modAd(z) =

1
2
modAd−1(f(z)).

• Off-critical, if c0 /∈ Pd(z). In this case, f : Ad(z) → Ad−1(f(z)) is a
conformal isomorphism, and modAd(z) = modAd−1(f(z)).

• Semi-critical, if c0 ∈ Ad(z).

In the semi-critical case, f−1(Ad−1(f(z))) is a two-holed disk in Pd(z),
one being Pd+1(z), and f mapping each hole conformally onto Pd(f(z)). We
consider a conformal isomorphism between Ad−1(f(z)) and a straight cylinder
C, and cut up C into two straight subcylinders C1 and C2 at the critical value
c1 = f(c0). Grötzch’s inequality applied to the inclusion of the preimages of
these cylinders into Ad(z) shows that modAd(z) >

1
2
modAd−1(f(z)).

c0

c1

c0

f
ι

C̃

C

Ad(z)

C1

C2
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We are particularly interested in the case where the critical orbit {ci}
passes through all critical pieces Pd(c0); we call f critically combinatori-
ally recurrent. This is in principle weaker than f being critically recurrent,
so that c0 is an accumulation point of the critical orbit, since we do not know
if
⋂

Pd(c0) = {c0}.
In this, we say that the critical annulus Ad+k(c0) is a child of the critical

annulus Ad(c0) if fk : Ad+k(c0) → Ad(c0) is an unramified 2-fold covering.
From the above, we have that modAd+k(c0) =

1
2
modAd(c0). The main idea

is that if we prove that a given critical annulus has many children, as its
children have many children and so on, we may prove divergence of the sum∑

Ad(c0), thereby showing local connectivity of J at the critical point.
In [2], the proofs of various facts are combinatorial, by translating the

geometry of the annuli into a tableau that keeps track of their mappings.
Here, we instead opt to keep the geometry explicit, at the expense of lengthier
arguments, but with the benefit of being able to visualize them.

We give a preliminary argument to establish the main geometrical ideas
involed. If f is critically combinatorially recurrent, then every critical piece
has a “child”. Given Pd(c0), let ck be the first return of c0 to the critical
piece Pd(c0). We then “pullback” the piece Pd(ck) = Pd(c0) along the orbit
{c0, c1, . . . , ck−1}, obtaining the pieces Pd+1(ck−1), . . . , Pd+k−1(c1), Pd+k(c0):

c0
ck

ck−1

ck−2

c1
c2

· ·
·

Pd(c0) = Pd(ck)

Pd+k(c0)

It is then easy to see that fk : Pd+k(c0) → Pd(c0) is a two to one ramified
covering. As a remark, the situation above illustrates that the first return ck
does not fall into Pd+k(c0), but this could have been the case.

Proposition 2.1. If f is critically combinatorially recurrent, then every crit-
ical annulus has a child.
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The proof is through the same picture as above, but in this case consid-
ering the first return of ck to the interior region Pd+1(c0) of the annulus, and
pulling back the annuli along the orbit. None of the annuli Ad+i(ck−i) for
1 ≤ i ≤ k − 1 can be critical or semi-critical, otherwise Ad(ck−i) would be
critical and ck−i would return to Pd+1(c0) sooner than the first return. The
mapping fk : Ad+k(c0) → Ad(c0) is then indeed an unramified double cover.

c0
ck

ck−1

ck−2

c1
c2

· ·
·

Ad(c0)

Ad+k(c0)

We need further assumptions on the map f to proceed, akin to non-
renormalizability. We say that f is combinatorially critically periodic if
there exists some ck such that ck ∈ Pd(c0) for all depths d. In [2], it is proved
that if f is combinatorially critically periodic, then f is renormalizable. In
fact, this condition is equivalent to f being simply renormalizable, something
expanded upon in an errata to the notes. From now on, we will assume that
f is combinatorially critically recurrent but not periodic (or more generally
that f is not renormalizable).

A critical annulus is said to be excellent if it contains no post-critical
points.

Proposition 2.2. Every excellent critical annulus has at least two children.

Proof. First, note that if a and b belong to the same piece of depth d , then
f i(a) and f i(b) belong to the same piece of depth d − i, for i ≤ d. Letting
Ad(c0) be an excellent critical annulus, suppose ck is the first return of the
critical orbit to Pd+1(c0), so that f

k : Ad+k(c0) → Ad(c0) is a 2 to 1 unramified
double cover as before. Since f is not combinatorially critically periodic,
there must be some depth d′ > d such that ck ∈ Pd′(c0) but ck /∈ Pd′+1(c0), so
that ck ∈ Ad′(c0). Equivalently, the annulus Ad′(ck) is semi-critical. (Milnor
calls d′ the semi-critical depth of ck.)
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c0

ck

ck−1
Ad(c0)

c1

· · ·
Ad′(ck)

For simplicity, let’s assume that d′ is much bigger than d, but the argu-
ments carry over in all cases. Applying the first return map fk to the annu-
lus Ad′(ck) iteratively, we consider the various annuli Ad′−k(c2k), Ad′−2k(c3k),
succesively. Note that we do not strictly have a mapping fk : Ad′(ck) →
Ad′−k(c2k) since Ad′(ck) is semi-critical, but we do have the double ramified
cover fk : Pd′(ck) → Pd′−k(c2k).

ckc0
ck

c2k
c2k

c3k

· · ·

Ad′(ck) Ad′−k(c2k) Ad′−2k(c3k)

We now that c0 and ck are in the same piece of depth d′, and in particular
ck ∈ Pd+1(c0) as the first return. Similarly, ck and c2k are in the same piece
of depth d′ − k, and if d′ − k ≥ d, they are in the same piece of depth
d and c2k ∈ Pd(c0). But as the annulus is excellent, c2k ∈ Pd+1(c0). We
also show that the annulus Ad′−k(c2k) is semi-critical; this is because fk

maps Ad′(c0) onto Ad′−k(c0), where ck ∈ Ad′(c0). Hence c2k ∈ Ad′−k(c0),
and c0 ∈ Ad′−k(c2k). Moreover, we cannot have that d′ − k = d, otherwise
c2k ∈ Ad′−k(c0) = Ad(c0), a contradiction with the annulus being excellent.

We can induct this reasoning to other iterates c2k, c3k, . . . , clk of the critical
orbit, as long as d′ − lk ≥ d. All the annuli Ad′−jk(c(j+1)k) are semi-critical,
the cjk all belong to the critical piece Pd+1(c0), and d′−d cannot be a multiple
of k.
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c0

c1

ck−1
ck

c2k

· · ·

· · ·

clk

f

f

f

f

fk

fk
fk

Moreover, the same ideas apply to show that the iterates ci, ci+k, ci+2k, . . .
are in the same depth d piece for 0 < i < k, as long as i+jk > d. In particular,
all the iterates ci where i ̸= jk and i < d′ − d are outside of the critical piece
Pd+1(c0). and since the annulus is excellent, they are also outside of Pd(c0).

We then conclude that cd′−d must lie outside of the original critical piece
Pd(c0). Let cm be the next return of cd′−d to Pd+1(c0), since f is critically
combinatorially recurrent, and we pullback the annulus Ad(c0) along fm to
a critical annulus Ad+m(c0). As m > d′ − d, ck is outside of Pd+m(c0), as will
be all other iterates. Hence fm : Ad+m(c0) → Ad(c0) is a 2 to 1 unramified
covering, and Ad+m(c0) is the second child of Ad(c0).

c0

c1

ck−1

ck

· · ·

· · ·

clk

· · ·

cd′−d

· · ·

cm

Proposition 2.3. Every child of an excellent parent is excellent, and an only
child must be excellent.
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Proof. Suppose Ad+k(c0) is a child of Ad(c0), and assume that it is not excel-
lent, so that there exists ck′ ∈ Ad+k(c0), where k′ ≥ k. Then ck′ is mapped
by fk to ck+k′ on the annulus Ad(c0), so that Ad(c0) is not excellent. Letting
cm be the first return of ck+k′ to the piece Pd+1(c0), we then pullback the
annulus Ad(c0) along fm and obtain another child of Ad(c0), similarly to the
previous proof.

c0

c1

ck−1

ck

· ·
·

ck′

ck+k′

· ·
·

cm

Ad(c0)

Ad+k(c0)

With these results about annuli and their children, [2] proceeds to show lo-
cal connectivity of the Julia sets under the assumption of non-renormalizability,
and various cases of critical recurrence or not.
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